Numerical Method for Model-free Pricing of Exotic Derivatives in Discrete Time Using Rough Path Signatures

Q3 Mathematics
Terry Lyons, Sina Nejad, Imanol Perez Arribas
{"title":"Numerical Method for Model-free Pricing of Exotic Derivatives in Discrete Time Using Rough Path Signatures","authors":"Terry Lyons, Sina Nejad, Imanol Perez Arribas","doi":"10.1080/1350486X.2020.1726784","DOIUrl":null,"url":null,"abstract":"ABSTRACT We estimate prices of exotic options in a discrete-time model-free setting when the trader has access to market prices of a rich enough class of exotic and vanilla options. This is achieved by estimating an unobservable quantity called ‘implied expected signature’ from such market prices, which are used to price other exotic derivatives. The implied expected signature is an object that characterizes the market dynamics.","PeriodicalId":35818,"journal":{"name":"Applied Mathematical Finance","volume":"43 1","pages":"583 - 597"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Mathematical Finance","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/1350486X.2020.1726784","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 8

Abstract

ABSTRACT We estimate prices of exotic options in a discrete-time model-free setting when the trader has access to market prices of a rich enough class of exotic and vanilla options. This is achieved by estimating an unobservable quantity called ‘implied expected signature’ from such market prices, which are used to price other exotic derivatives. The implied expected signature is an object that characterizes the market dynamics.
基于粗糙路径特征的离散时间奇异导数无模型定价的数值方法
当交易者能够获得足够丰富的一类奇异期权和香草期权的市场价格时,我们在离散时间无模型设置下估计奇异期权的价格。这是通过从这些市场价格中估计一个不可观察的数量来实现的,这个数量被称为“隐含预期特征”,这些市场价格被用来为其他外来衍生品定价。隐含的预期签名是表征市场动态的对象。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Applied Mathematical Finance
Applied Mathematical Finance Economics, Econometrics and Finance-Finance
CiteScore
2.30
自引率
0.00%
发文量
6
期刊介绍: The journal encourages the confident use of applied mathematics and mathematical modelling in finance. The journal publishes papers on the following: •modelling of financial and economic primitives (interest rates, asset prices etc); •modelling market behaviour; •modelling market imperfections; •pricing of financial derivative securities; •hedging strategies; •numerical methods; •financial engineering.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信