Sign changes of fourier coefficients of holomorphic cusp forms at norm form arguments

IF 0.6 3区 数学 Q3 MATHEMATICS
Alexander P. Mangerel
{"title":"Sign changes of fourier coefficients of holomorphic cusp forms at norm form arguments","authors":"Alexander P. Mangerel","doi":"10.1017/S0305004123000294","DOIUrl":null,"url":null,"abstract":"Abstract Let f be a non-CM Hecke eigencusp form of level 1 and fixed weight, and let \n$\\{\\lambda_f(n)\\}_n$\n be its sequence of normalised Fourier coefficients. We show that if \n$K/ \\mathbb{Q}$\n is any number field, and \n$\\mathcal{N}_K$\n denotes the collection of integers representable as norms of integral ideals of K, then a positive proportion of the positive integers \n$n \\in \\mathcal{N}_K$\n yield a sign change for the sequence \n$\\{\\lambda_f(n)\\}_{n \\in \\mathcal{N}_K}$\n . More precisely, for a positive proportion of \n$n \\in \\mathcal{N}_K \\cap [1,X]$\n we have \n$\\lambda_f(n)\\lambda_f(n') < 0$\n , where n ′ is the first element of \n$\\mathcal{N}_K$\n greater than n for which \n$\\lambda_f(n') \\neq 0$\n . For example, for \n$K = \\mathbb{Q}(i)$\n and \n$\\mathcal{N}_K = \\{m^2+n^2 \\;:\\; m,n \\in \\mathbb{Z}\\}$\n the set of sums of two squares, we obtain \n$\\gg_f X/\\sqrt{\\log X}$\n such sign changes, which is best possible (up to the implicit constant) and improves upon work of Banerjee and Pandey. Our proof relies on recent work of Matomäki and Radziwiłł on sparsely-supported multiplicative functions, together with some technical refinements of their results due to the author. In a related vein, we also consider the question of sign changes along shifted sums of two squares, for which multiplicative techniques do not directly apply. Using estimates for shifted convolution sums among other techniques, we establish that for any fixed \n$a \\neq 0$\n there are \n$\\gg_{f,\\varepsilon} X^{1/2-\\varepsilon}$\n sign changes for \n$\\lambda_f$\n along the sequence of integers of the form \n$a + m^2 + n^2 \\leq X$\n .","PeriodicalId":18320,"journal":{"name":"Mathematical Proceedings of the Cambridge Philosophical Society","volume":"12 1","pages":"539 - 567"},"PeriodicalIF":0.6000,"publicationDate":"2023-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Proceedings of the Cambridge Philosophical Society","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/S0305004123000294","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 2

Abstract

Abstract Let f be a non-CM Hecke eigencusp form of level 1 and fixed weight, and let $\{\lambda_f(n)\}_n$ be its sequence of normalised Fourier coefficients. We show that if $K/ \mathbb{Q}$ is any number field, and $\mathcal{N}_K$ denotes the collection of integers representable as norms of integral ideals of K, then a positive proportion of the positive integers $n \in \mathcal{N}_K$ yield a sign change for the sequence $\{\lambda_f(n)\}_{n \in \mathcal{N}_K}$ . More precisely, for a positive proportion of $n \in \mathcal{N}_K \cap [1,X]$ we have $\lambda_f(n)\lambda_f(n') < 0$ , where n ′ is the first element of $\mathcal{N}_K$ greater than n for which $\lambda_f(n') \neq 0$ . For example, for $K = \mathbb{Q}(i)$ and $\mathcal{N}_K = \{m^2+n^2 \;:\; m,n \in \mathbb{Z}\}$ the set of sums of two squares, we obtain $\gg_f X/\sqrt{\log X}$ such sign changes, which is best possible (up to the implicit constant) and improves upon work of Banerjee and Pandey. Our proof relies on recent work of Matomäki and Radziwiłł on sparsely-supported multiplicative functions, together with some technical refinements of their results due to the author. In a related vein, we also consider the question of sign changes along shifted sums of two squares, for which multiplicative techniques do not directly apply. Using estimates for shifted convolution sums among other techniques, we establish that for any fixed $a \neq 0$ there are $\gg_{f,\varepsilon} X^{1/2-\varepsilon}$ sign changes for $\lambda_f$ along the sequence of integers of the form $a + m^2 + n^2 \leq X$ .
全纯尖形在范数参数处的傅立叶系数的符号变化
设f为一级定权的非cm Hecke特征形式,设$\{\lambda_f(n)\}_n$为其归一化傅里叶系数序列。我们证明,如果$K/ \mathbb{Q}$是任意数字域,并且$\mathcal{N}_K$表示可表示为K的积分理想的范数的整数集合,则正整数$n \in \mathcal{N}_K$的正比例产生序列$\{\lambda_f(n)\}_{n \in \mathcal{N}_K}$的符号变化。更准确地说,对于$n \in \mathcal{N}_K \cap [1,X]$的正比例,我们有$\lambda_f(n)\lambda_f(n') < 0$,其中n '是$\mathcal{N}_K$的第一个大于n的元素,对于$\lambda_f(n') \neq 0$。例如,对于$K = \mathbb{Q}(i)$和$\mathcal{N}_K = \{m^2+n^2 \;:\; m,n \in \mathbb{Z}\}$两个平方和的集合,我们得到$\gg_f X/\sqrt{\log X}$这样的符号变化,这是最好的可能(直到隐式常数),并改进了Banerjee和Pandey的工作。我们的证明依赖于Matomäki和Radziwiłł最近关于稀疏支持的乘法函数的工作,以及作者对其结果的一些技术改进。在一个相关的静脉,我们也考虑沿移位的两个平方和的符号变化的问题,其中乘法技术不直接适用。在其他技术中使用移位卷积和的估计,我们建立了对于任何固定的$a \neq 0$, $\lambda_f$沿着形式为$a + m^2 + n^2 \leq X$的整数序列有$\gg_{f,\varepsilon} X^{1/2-\varepsilon}$符号变化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.70
自引率
0.00%
发文量
39
审稿时长
6-12 weeks
期刊介绍: Papers which advance knowledge of mathematics, either pure or applied, will be considered by the Editorial Committee. The work must be original and not submitted to another journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信