Projections of the minimal nilpotent orbit in a simple Lie algebra and secant varieties

IF 0.6 3区 数学 Q3 MATHEMATICS
D. Panyushev
{"title":"Projections of the minimal nilpotent orbit in a simple Lie algebra and secant varieties","authors":"D. Panyushev","doi":"10.1017/S0305004123000348","DOIUrl":null,"url":null,"abstract":"Abstract Let G be a simple algebraic group with \n${\\mathfrak g}={\\textrm{Lie }} G$\n and \n${\\mathcal O}_{\\textsf{min}}\\subset{\\mathfrak g}$\n the minimal nilpotent orbit. For a \n${\\mathbb Z}_2$\n -grading \n${\\mathfrak g}={\\mathfrak g}_0\\oplus{\\mathfrak g}_1$\n , let \n$G_0$\n be a connected subgroup of G with \n${\\textrm{Lie }} G_0={\\mathfrak g}_0$\n . We study the \n$G_0$\n -equivariant projections \n$\\varphi\\,:\\,\\overline{{\\mathcal O}_{\\textsf{min}}}\\to {\\mathfrak g}_0$\n and \n$\\psi:\\overline{{\\mathcal O}_{\\textsf{min}}}\\to{\\mathfrak g}_1$\n . It is shown that the properties of \n$\\overline{\\varphi({\\mathcal O}_{\\textsf{min}})}$\n and \n$\\overline{\\psi({\\mathcal O}_{\\textsf{min}})}$\n essentially depend on whether the intersection \n${\\mathcal O}_{\\textsf{min}}\\cap{\\mathfrak g}_1$\n is empty or not. If \n${\\mathcal O}_{\\textsf{min}}\\cap{\\mathfrak g}_1\\ne\\varnothing$\n , then both \n$\\overline{\\varphi({\\mathcal O}_{\\textsf{min}})}$\n and \n$\\overline{\\psi({\\mathcal O}_{\\textsf{min}})}$\n contain a 1-parameter family of closed \n$G_0$\n -orbits, while if \n${\\mathcal O}_{\\textsf{min}}\\cap{\\mathfrak g}_1=\\varnothing$\n , then both are \n$G_0$\n -prehomogeneous. We prove that \n$\\overline{G{\\cdot}\\varphi({\\mathcal O}_{\\textsf{min}})}=\\overline{G{\\cdot}\\psi({\\mathcal O}_{\\textsf{min}})}$\n . Moreover, if \n${\\mathcal O}_{\\textsf{min}}\\cap{\\mathfrak g}_1\\ne\\varnothing$\n , then this common variety is the affine cone over the secant variety of \n${\\mathbb P}({\\mathcal O}_{\\textsf{min}})\\subset{\\mathbb P}({\\mathfrak g})$\n . As a digression, we obtain some invariant-theoretic results on the affine cone over the secant variety of the minimal orbit in an arbitrary simple G-module. In conclusion, we discuss more general projections that are related to either arbitrary reductive subalgebras of \n${\\mathfrak g}$\n in place of \n${\\mathfrak g}_0$\n or spherical nilpotent G-orbits in place of \n${\\mathcal O}_{\\textsf{min}}$\n .","PeriodicalId":18320,"journal":{"name":"Mathematical Proceedings of the Cambridge Philosophical Society","volume":"3 1","pages":"595 - 624"},"PeriodicalIF":0.6000,"publicationDate":"2021-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Proceedings of the Cambridge Philosophical Society","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/S0305004123000348","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 2

Abstract

Abstract Let G be a simple algebraic group with ${\mathfrak g}={\textrm{Lie }} G$ and ${\mathcal O}_{\textsf{min}}\subset{\mathfrak g}$ the minimal nilpotent orbit. For a ${\mathbb Z}_2$ -grading ${\mathfrak g}={\mathfrak g}_0\oplus{\mathfrak g}_1$ , let $G_0$ be a connected subgroup of G with ${\textrm{Lie }} G_0={\mathfrak g}_0$ . We study the $G_0$ -equivariant projections $\varphi\,:\,\overline{{\mathcal O}_{\textsf{min}}}\to {\mathfrak g}_0$ and $\psi:\overline{{\mathcal O}_{\textsf{min}}}\to{\mathfrak g}_1$ . It is shown that the properties of $\overline{\varphi({\mathcal O}_{\textsf{min}})}$ and $\overline{\psi({\mathcal O}_{\textsf{min}})}$ essentially depend on whether the intersection ${\mathcal O}_{\textsf{min}}\cap{\mathfrak g}_1$ is empty or not. If ${\mathcal O}_{\textsf{min}}\cap{\mathfrak g}_1\ne\varnothing$ , then both $\overline{\varphi({\mathcal O}_{\textsf{min}})}$ and $\overline{\psi({\mathcal O}_{\textsf{min}})}$ contain a 1-parameter family of closed $G_0$ -orbits, while if ${\mathcal O}_{\textsf{min}}\cap{\mathfrak g}_1=\varnothing$ , then both are $G_0$ -prehomogeneous. We prove that $\overline{G{\cdot}\varphi({\mathcal O}_{\textsf{min}})}=\overline{G{\cdot}\psi({\mathcal O}_{\textsf{min}})}$ . Moreover, if ${\mathcal O}_{\textsf{min}}\cap{\mathfrak g}_1\ne\varnothing$ , then this common variety is the affine cone over the secant variety of ${\mathbb P}({\mathcal O}_{\textsf{min}})\subset{\mathbb P}({\mathfrak g})$ . As a digression, we obtain some invariant-theoretic results on the affine cone over the secant variety of the minimal orbit in an arbitrary simple G-module. In conclusion, we discuss more general projections that are related to either arbitrary reductive subalgebras of ${\mathfrak g}$ in place of ${\mathfrak g}_0$ or spherical nilpotent G-orbits in place of ${\mathcal O}_{\textsf{min}}$ .
简单李代数中最小幂零轨道的投影和割线变分
摘要设G为具有${\mathfrak g}={\textrm{Lie }} G$和${\mathcal O}_{\textsf{min}}\subset{\mathfrak g}$最小幂零轨道的简单代数群。对于${\mathbb Z}_2$ -级${\mathfrak g}={\mathfrak g}_0\oplus{\mathfrak g}_1$,设$G_0$为G与${\textrm{Lie }} G_0={\mathfrak g}_0$的连通子群。我们研究了$G_0$ -等变投影$\varphi\,:\,\overline{{\mathcal O}_{\textsf{min}}}\to {\mathfrak g}_0$和$\psi:\overline{{\mathcal O}_{\textsf{min}}}\to{\mathfrak g}_1$。证明了$\overline{\varphi({\mathcal O}_{\textsf{min}})}$和$\overline{\psi({\mathcal O}_{\textsf{min}})}$的性质本质上取决于交集${\mathcal O}_{\textsf{min}}\cap{\mathfrak g}_1$是否为空。如果${\mathcal O}_{\textsf{min}}\cap{\mathfrak g}_1\ne\varnothing$,则$\overline{\varphi({\mathcal O}_{\textsf{min}})}$和$\overline{\psi({\mathcal O}_{\textsf{min}})}$都包含一个封闭的$G_0$ -轨道的1参数族,而如果${\mathcal O}_{\textsf{min}}\cap{\mathfrak g}_1=\varnothing$,则两者都是$G_0$ -预均匀的。我们证明$\overline{G{\cdot}\varphi({\mathcal O}_{\textsf{min}})}=\overline{G{\cdot}\psi({\mathcal O}_{\textsf{min}})}$。此外,如果${\mathcal O}_{\textsf{min}}\cap{\mathfrak g}_1\ne\varnothing$,那么这个共同变量就是仿射锥除以${\mathbb P}({\mathcal O}_{\textsf{min}})\subset{\mathbb P}({\mathfrak g})$的正割变量。作为题外话,我们得到了任意简单g模中最小轨道割线变化上仿射锥的一些不变性理论结果。总之,我们讨论了与任意约化子代数${\mathfrak g}$代替${\mathfrak g}_0$或球形幂零g轨道代替${\mathcal O}_{\textsf{min}}$有关的更一般的投影。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.70
自引率
0.00%
发文量
39
审稿时长
6-12 weeks
期刊介绍: Papers which advance knowledge of mathematics, either pure or applied, will be considered by the Editorial Committee. The work must be original and not submitted to another journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信