{"title":"Projections of the minimal nilpotent orbit in a simple Lie algebra and secant varieties","authors":"D. Panyushev","doi":"10.1017/S0305004123000348","DOIUrl":null,"url":null,"abstract":"Abstract Let G be a simple algebraic group with \n${\\mathfrak g}={\\textrm{Lie }} G$\n and \n${\\mathcal O}_{\\textsf{min}}\\subset{\\mathfrak g}$\n the minimal nilpotent orbit. For a \n${\\mathbb Z}_2$\n -grading \n${\\mathfrak g}={\\mathfrak g}_0\\oplus{\\mathfrak g}_1$\n , let \n$G_0$\n be a connected subgroup of G with \n${\\textrm{Lie }} G_0={\\mathfrak g}_0$\n . We study the \n$G_0$\n -equivariant projections \n$\\varphi\\,:\\,\\overline{{\\mathcal O}_{\\textsf{min}}}\\to {\\mathfrak g}_0$\n and \n$\\psi:\\overline{{\\mathcal O}_{\\textsf{min}}}\\to{\\mathfrak g}_1$\n . It is shown that the properties of \n$\\overline{\\varphi({\\mathcal O}_{\\textsf{min}})}$\n and \n$\\overline{\\psi({\\mathcal O}_{\\textsf{min}})}$\n essentially depend on whether the intersection \n${\\mathcal O}_{\\textsf{min}}\\cap{\\mathfrak g}_1$\n is empty or not. If \n${\\mathcal O}_{\\textsf{min}}\\cap{\\mathfrak g}_1\\ne\\varnothing$\n , then both \n$\\overline{\\varphi({\\mathcal O}_{\\textsf{min}})}$\n and \n$\\overline{\\psi({\\mathcal O}_{\\textsf{min}})}$\n contain a 1-parameter family of closed \n$G_0$\n -orbits, while if \n${\\mathcal O}_{\\textsf{min}}\\cap{\\mathfrak g}_1=\\varnothing$\n , then both are \n$G_0$\n -prehomogeneous. We prove that \n$\\overline{G{\\cdot}\\varphi({\\mathcal O}_{\\textsf{min}})}=\\overline{G{\\cdot}\\psi({\\mathcal O}_{\\textsf{min}})}$\n . Moreover, if \n${\\mathcal O}_{\\textsf{min}}\\cap{\\mathfrak g}_1\\ne\\varnothing$\n , then this common variety is the affine cone over the secant variety of \n${\\mathbb P}({\\mathcal O}_{\\textsf{min}})\\subset{\\mathbb P}({\\mathfrak g})$\n . As a digression, we obtain some invariant-theoretic results on the affine cone over the secant variety of the minimal orbit in an arbitrary simple G-module. In conclusion, we discuss more general projections that are related to either arbitrary reductive subalgebras of \n${\\mathfrak g}$\n in place of \n${\\mathfrak g}_0$\n or spherical nilpotent G-orbits in place of \n${\\mathcal O}_{\\textsf{min}}$\n .","PeriodicalId":18320,"journal":{"name":"Mathematical Proceedings of the Cambridge Philosophical Society","volume":"3 1","pages":"595 - 624"},"PeriodicalIF":0.6000,"publicationDate":"2021-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Proceedings of the Cambridge Philosophical Society","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/S0305004123000348","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 2
Abstract
Abstract Let G be a simple algebraic group with
${\mathfrak g}={\textrm{Lie }} G$
and
${\mathcal O}_{\textsf{min}}\subset{\mathfrak g}$
the minimal nilpotent orbit. For a
${\mathbb Z}_2$
-grading
${\mathfrak g}={\mathfrak g}_0\oplus{\mathfrak g}_1$
, let
$G_0$
be a connected subgroup of G with
${\textrm{Lie }} G_0={\mathfrak g}_0$
. We study the
$G_0$
-equivariant projections
$\varphi\,:\,\overline{{\mathcal O}_{\textsf{min}}}\to {\mathfrak g}_0$
and
$\psi:\overline{{\mathcal O}_{\textsf{min}}}\to{\mathfrak g}_1$
. It is shown that the properties of
$\overline{\varphi({\mathcal O}_{\textsf{min}})}$
and
$\overline{\psi({\mathcal O}_{\textsf{min}})}$
essentially depend on whether the intersection
${\mathcal O}_{\textsf{min}}\cap{\mathfrak g}_1$
is empty or not. If
${\mathcal O}_{\textsf{min}}\cap{\mathfrak g}_1\ne\varnothing$
, then both
$\overline{\varphi({\mathcal O}_{\textsf{min}})}$
and
$\overline{\psi({\mathcal O}_{\textsf{min}})}$
contain a 1-parameter family of closed
$G_0$
-orbits, while if
${\mathcal O}_{\textsf{min}}\cap{\mathfrak g}_1=\varnothing$
, then both are
$G_0$
-prehomogeneous. We prove that
$\overline{G{\cdot}\varphi({\mathcal O}_{\textsf{min}})}=\overline{G{\cdot}\psi({\mathcal O}_{\textsf{min}})}$
. Moreover, if
${\mathcal O}_{\textsf{min}}\cap{\mathfrak g}_1\ne\varnothing$
, then this common variety is the affine cone over the secant variety of
${\mathbb P}({\mathcal O}_{\textsf{min}})\subset{\mathbb P}({\mathfrak g})$
. As a digression, we obtain some invariant-theoretic results on the affine cone over the secant variety of the minimal orbit in an arbitrary simple G-module. In conclusion, we discuss more general projections that are related to either arbitrary reductive subalgebras of
${\mathfrak g}$
in place of
${\mathfrak g}_0$
or spherical nilpotent G-orbits in place of
${\mathcal O}_{\textsf{min}}$
.
期刊介绍:
Papers which advance knowledge of mathematics, either pure or applied, will be considered by the Editorial Committee. The work must be original and not submitted to another journal.