Control of the Schrödinger equation by slow deformations of the domain

IF 1.8 1区 数学 Q1 MATHEMATICS, APPLIED
Alessandro Duca, R. Joly, D. Turaev
{"title":"Control of the Schrödinger equation by slow deformations of the domain","authors":"Alessandro Duca, R. Joly, D. Turaev","doi":"10.4171/aihpc/86","DOIUrl":null,"url":null,"abstract":"The aim of this work is to study the controllability of the Schr\\\"odinger equation \\begin{equation}\\label{eq_abstract} i\\partial_t u(t)=-\\Delta u(t)~~~~~\\text{ on }\\Omega(t) \\tag{$\\ast$} \\end{equation} with Dirichlet boundary conditions, where $\\Omega(t)\\subset\\mathbb{R}^N$ is a time-varying domain. We prove the global approximate controllability of \\eqref{eq_abstract} in $L^2(\\Omega)$, via an adiabatic deformation $\\Omega(t)\\subset\\mathbb{R}$ ($t\\in[0,T]$) such that $\\Omega(0)=\\Omega(T)=\\Omega$. This control is strongly based on the Hamiltonian structure of \\eqref{eq_abstract} provided by [18], which enables the use of adiabatic motions. We also discuss several explicit interesting controls that we perform in the specific framework of rectangular domains.","PeriodicalId":55514,"journal":{"name":"Annales De L Institut Henri Poincare-Analyse Non Lineaire","volume":"2 1","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2022-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annales De L Institut Henri Poincare-Analyse Non Lineaire","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4171/aihpc/86","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 4

Abstract

The aim of this work is to study the controllability of the Schr\"odinger equation \begin{equation}\label{eq_abstract} i\partial_t u(t)=-\Delta u(t)~~~~~\text{ on }\Omega(t) \tag{$\ast$} \end{equation} with Dirichlet boundary conditions, where $\Omega(t)\subset\mathbb{R}^N$ is a time-varying domain. We prove the global approximate controllability of \eqref{eq_abstract} in $L^2(\Omega)$, via an adiabatic deformation $\Omega(t)\subset\mathbb{R}$ ($t\in[0,T]$) such that $\Omega(0)=\Omega(T)=\Omega$. This control is strongly based on the Hamiltonian structure of \eqref{eq_abstract} provided by [18], which enables the use of adiabatic motions. We also discuss several explicit interesting controls that we perform in the specific framework of rectangular domains.
控制Schrödinger方程的缓慢变形的领域
本文的目的是研究具有Dirichlet边界条件的Schrödinger方程\begin{equation}\label{eq_abstract} i\partial_t u(t)=-\Delta u(t)~~~~~\text{ on }\Omega(t) \tag{$\ast$} \end{equation}的可控性,其中$\Omega(t)\subset\mathbb{R}^N$为时变域。我们通过一个绝热变形$\Omega(t)\subset\mathbb{R}$ ($t\in[0,T]$)证明了$L^2(\Omega)$中\eqref{eq_abstract}的全局近似可控性,使得$\Omega(0)=\Omega(T)=\Omega$。这种控制强烈地基于[18]提供的\eqref{eq_abstract}哈密顿结构,这使得使用绝热运动成为可能。我们还讨论了我们在矩形域的特定框架中执行的几个显式的有趣控制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.10
自引率
5.30%
发文量
62
审稿时长
>12 weeks
期刊介绍: The Nonlinear Analysis section of the Annales de l''Institut Henri Poincaré is an international journal created in 1983 which publishes original and high quality research articles. It concentrates on all domains concerned with nonlinear analysis, specially applicable to PDE, mechanics, physics, economy, without overlooking the numerical aspects.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信