Analysis and optimal control of a deterministic Zika virus model

Dawit Denu, Hyun-Soo Son
{"title":"Analysis and optimal control of a deterministic Zika virus model","authors":"Dawit Denu, Hyun-Soo Son","doi":"10.22436/jnsa.015.02.02","DOIUrl":null,"url":null,"abstract":"In this paper, we consider a deterministic model explaining how Zika virus is transmitted between human and mosquito. The human population is divided into three groups as susceptible (x1), infected (x2), and treated (x3). Similarly, the mosquito population is divided into susceptible (y1) and infected (y2) groups. First, we conduct the local and global stability of the disease-free and endemic equilibrium points in relation to the basic reproductive number. We also study the sensitivity of the basic reproductive number and the endemic equilibrium point with respect to each parameters used in the model. Furthermore, we apply optimal control theory to show that there are cost effective control methods with the prevention effort (u1) of the contact between human and vector and the effort of treatment (u2) for human. Finally, we provide numerical simulations to support and illustrate some of the theoretical results.","PeriodicalId":48799,"journal":{"name":"Journal of Nonlinear Sciences and Applications","volume":"17 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nonlinear Sciences and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22436/jnsa.015.02.02","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In this paper, we consider a deterministic model explaining how Zika virus is transmitted between human and mosquito. The human population is divided into three groups as susceptible (x1), infected (x2), and treated (x3). Similarly, the mosquito population is divided into susceptible (y1) and infected (y2) groups. First, we conduct the local and global stability of the disease-free and endemic equilibrium points in relation to the basic reproductive number. We also study the sensitivity of the basic reproductive number and the endemic equilibrium point with respect to each parameters used in the model. Furthermore, we apply optimal control theory to show that there are cost effective control methods with the prevention effort (u1) of the contact between human and vector and the effort of treatment (u2) for human. Finally, we provide numerical simulations to support and illustrate some of the theoretical results.
寨卡病毒确定性模型的分析与最优控制
在本文中,我们考虑了一个确定性模型来解释寨卡病毒如何在人与蚊子之间传播。人群分为易感(x1)、感染(x2)和治疗(x3)三组。同样,蚊子种群也被分为易感(y1)和受感染(y2)两类。首先,我们根据基本繁殖数对无病和地方性平衡点进行了局部和全局稳定性分析。我们还研究了基本繁殖数和地方性平衡点对模型中各参数的敏感性。此外,我们运用最优控制理论表明,存在以人与病媒接触的预防努力(u1)和对人的治疗努力(u2)为代价的有效控制方法。最后,我们提供了数值模拟来支持和说明一些理论结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Nonlinear Sciences and Applications
Journal of Nonlinear Sciences and Applications MATHEMATICS, APPLIED-MATHEMATICS
自引率
0.00%
发文量
11
期刊介绍: The Journal of Nonlinear Science and Applications (JNSA) (print: ISSN 2008-1898 online: ISSN 2008-1901) is an international journal which provides very fast publication of original research papers in the fields of nonlinear analysis. Journal of Nonlinear Science and Applications is a journal that aims to unite and stimulate mathematical research community. It publishes original research papers and survey articles on all areas of nonlinear analysis and theoretical applied nonlinear analysis. All articles are fully refereed and are judged by their contribution to advancing the state of the science of mathematics. Manuscripts are invited from academicians, research students, and scientists for publication consideration. Papers are accepted for editorial consideration through online submission with the understanding that they have not been published, submitted or accepted for publication elsewhere.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信