Small area quantile estimation based on distribution function using linear mixed models

IF 1.2 Q3 ECONOMICS
Tomasz Stachurski
{"title":"Small area quantile estimation based on distribution function using linear mixed models","authors":"Tomasz Stachurski","doi":"10.18559/ebr.2021.2.7","DOIUrl":null,"url":null,"abstract":"Abstract In economic studies researchers are often interested in the estimation of the distribution function or certain functions of the distribution function such as quantiles. This work focuses on the estimation quantiles as inverses of the estimates of the distribution function in the presence of auxiliary information that is correlated with the study variable. In the paper a plug-in estimator of the distribution function is proposed which is used to obtain quantiles in the population and in the small areas. Performance of the proposed method is compared with other estimators of the distribution function and quantiles using the simulation study. The obtained results show that the proposed method usually has smaller relative biases and relative RMSE comparing to other methods of obtaining quantiles based on inverting the distribution function.","PeriodicalId":41557,"journal":{"name":"Economics and Business Review","volume":"21 1","pages":"97 - 114"},"PeriodicalIF":1.2000,"publicationDate":"2021-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Economics and Business Review","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18559/ebr.2021.2.7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract In economic studies researchers are often interested in the estimation of the distribution function or certain functions of the distribution function such as quantiles. This work focuses on the estimation quantiles as inverses of the estimates of the distribution function in the presence of auxiliary information that is correlated with the study variable. In the paper a plug-in estimator of the distribution function is proposed which is used to obtain quantiles in the population and in the small areas. Performance of the proposed method is compared with other estimators of the distribution function and quantiles using the simulation study. The obtained results show that the proposed method usually has smaller relative biases and relative RMSE comparing to other methods of obtaining quantiles based on inverting the distribution function.
基于线性混合模型分布函数的小面积分位数估计
在经济研究中,研究人员经常对分布函数或分布函数的某些函数(如分位数)的估计感兴趣。这项工作的重点是在与研究变量相关的辅助信息存在的情况下,作为分布函数估计的逆的估计分位数。本文提出了一种分布函数的插入式估计器,用于获得总体和小区域的分位数。通过仿真研究,将该方法的性能与其他分布函数和分位数估计方法进行了比较。结果表明,与其他基于分布函数反求的分位数方法相比,该方法具有较小的相对偏差和相对RMSE。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.40
自引率
28.60%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信