{"title":"Tate-Hochschild cohomology rings for eventually periodic Gorenstein algebras","authors":"Satoshi Usui","doi":"10.55937/sut/1641859464","DOIUrl":null,"url":null,"abstract":"Tate-Hochschild cohomology of an algebra is a generalization of ordinary Hochschild cohomology, which is defined on positive and negative degrees and has a ring structure. Our purpose of this paper is to study the eventual periodicity of an algebra by using the Tate-Hochschild cohomology ring. First, we deal with eventually periodic algebras and show that they are not necessarily Gorenstein algebras. Secondly, we characterize the eventual periodicity of a Gorenstein algebra as the existence of an invertible homogeneous element of the Tate-Hochschild cohomology ring of the algebra, which is our main result. Finally, we use tensor algebras to establish a way of constructing eventually periodic Gorenstein algebras.","PeriodicalId":38708,"journal":{"name":"SUT Journal of Mathematics","volume":"20 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SUT Journal of Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.55937/sut/1641859464","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 2
Abstract
Tate-Hochschild cohomology of an algebra is a generalization of ordinary Hochschild cohomology, which is defined on positive and negative degrees and has a ring structure. Our purpose of this paper is to study the eventual periodicity of an algebra by using the Tate-Hochschild cohomology ring. First, we deal with eventually periodic algebras and show that they are not necessarily Gorenstein algebras. Secondly, we characterize the eventual periodicity of a Gorenstein algebra as the existence of an invertible homogeneous element of the Tate-Hochschild cohomology ring of the algebra, which is our main result. Finally, we use tensor algebras to establish a way of constructing eventually periodic Gorenstein algebras.