{"title":"In-Flight Detection of Vibration Anomalies in Unmanned Aerial Vehicles","authors":"P. Banerjee, Wendy A. Okolo, Andrew J. Moore","doi":"10.1115/1.4047468","DOIUrl":null,"url":null,"abstract":"\n Owing to the frequency of occurrence and high risk associated with bearings, identification, and characterization of bearing faults in motors via nondestructive evaluation (NDE) methods have been studied extensively, among which vibration analysis has been found to be a promising technique for early diagnosis of anomalies. However, a majority of the existing techniques rely on vibration sensors attached onto or in close proximity to the motor in order to collect signals with a relatively high SNR. Due to weight and space restrictions, these techniques cannot be used in unmanned aerial vehicles (UAVs), especially during flight operations since accelerometers cannot be attached onto motors in small UAVs. Small UAVs are often subjected to vibrational disturbances caused by multiple factors such as weather turbulence, propeller imbalance, or bearing faults. Such anomalies may not only pose risks to UAV’s internal circuitry, components, or payload, they may also generate undesirable noise level particularly for UAVs expected to fly in low-altitudes or urban canyon. This paper presents a detailed discussion of challenges in in-flight detection of bearing failure in UAVs using existing approaches and offers potential solutions to detect overall vibration anomalies in small UAV operations based on IMU data.","PeriodicalId":52294,"journal":{"name":"Journal of Nondestructive Evaluation, Diagnostics and Prognostics of Engineering Systems","volume":"22 1","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2020-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nondestructive Evaluation, Diagnostics and Prognostics of Engineering Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/1.4047468","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 6
Abstract
Owing to the frequency of occurrence and high risk associated with bearings, identification, and characterization of bearing faults in motors via nondestructive evaluation (NDE) methods have been studied extensively, among which vibration analysis has been found to be a promising technique for early diagnosis of anomalies. However, a majority of the existing techniques rely on vibration sensors attached onto or in close proximity to the motor in order to collect signals with a relatively high SNR. Due to weight and space restrictions, these techniques cannot be used in unmanned aerial vehicles (UAVs), especially during flight operations since accelerometers cannot be attached onto motors in small UAVs. Small UAVs are often subjected to vibrational disturbances caused by multiple factors such as weather turbulence, propeller imbalance, or bearing faults. Such anomalies may not only pose risks to UAV’s internal circuitry, components, or payload, they may also generate undesirable noise level particularly for UAVs expected to fly in low-altitudes or urban canyon. This paper presents a detailed discussion of challenges in in-flight detection of bearing failure in UAVs using existing approaches and offers potential solutions to detect overall vibration anomalies in small UAV operations based on IMU data.