Accuracy controlled data assimilation for parabolic problems

W. Dahmen, R. Stevenson, Jan Westerdiep
{"title":"Accuracy controlled data assimilation for parabolic problems","authors":"W. Dahmen, R. Stevenson, Jan Westerdiep","doi":"10.1090/mcom/3680","DOIUrl":null,"url":null,"abstract":"This paper is concerned with the recovery of (approximate) solutions to parabolic problems from incomplete and possibly inconsistent observational data, given on a time-space cylinder that is a strict subset of the computational domain under consideration. Unlike previous approaches to this and related problems our starting point is a regularized least squares formulation in a continuous infinite-dimensional setting that is based on stable variational time-space formulations of the parabolic PDE. This allows us to derive a priori as well as a posteriori error bounds for the recovered states with respect to a certain reference solution. In these bounds the regularization parameter is disentangled from the underlying discretization. An important ingredient for the derivation of a posteriori bounds is the construction of suitable Fortin operators which allow us to control oscillation errors stemming from the discretization of dual norms. Moreover, the variational framework allows us to contrive preconditioners for the discrete problems whose application can be performed in linear time, and for which the condition numbers of the preconditioned systems are uniformly proportional to that of the regularized continuous problem. In particular, we provide suitable stopping criteria for the iterative solvers based on the a posteriori error bounds. The presented numerical experiments quantify the theoretical findings and demonstrate the performance of the numerical scheme in relation with the underlying discretization and regularization.","PeriodicalId":18301,"journal":{"name":"Math. Comput. Model.","volume":"19 1","pages":"557-595"},"PeriodicalIF":0.0000,"publicationDate":"2021-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Math. Comput. Model.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/mcom/3680","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

This paper is concerned with the recovery of (approximate) solutions to parabolic problems from incomplete and possibly inconsistent observational data, given on a time-space cylinder that is a strict subset of the computational domain under consideration. Unlike previous approaches to this and related problems our starting point is a regularized least squares formulation in a continuous infinite-dimensional setting that is based on stable variational time-space formulations of the parabolic PDE. This allows us to derive a priori as well as a posteriori error bounds for the recovered states with respect to a certain reference solution. In these bounds the regularization parameter is disentangled from the underlying discretization. An important ingredient for the derivation of a posteriori bounds is the construction of suitable Fortin operators which allow us to control oscillation errors stemming from the discretization of dual norms. Moreover, the variational framework allows us to contrive preconditioners for the discrete problems whose application can be performed in linear time, and for which the condition numbers of the preconditioned systems are uniformly proportional to that of the regularized continuous problem. In particular, we provide suitable stopping criteria for the iterative solvers based on the a posteriori error bounds. The presented numerical experiments quantify the theoretical findings and demonstrate the performance of the numerical scheme in relation with the underlying discretization and regularization.
抛物线问题的精度控制数据同化
本文讨论了在计算域的严格子集时空柱体上给出的不完全和可能不一致的抛物型问题的(近似)解的恢复。不像以前的方法来解决这个问题和相关的问题,我们的出发点是一个正则化的最小二乘公式在连续无限维设置,是基于稳定的变分时空公式的抛物型偏微分方程。这使我们能够推导先验和后验的误差范围,为恢复状态相对于某一参考解决方案。在这些边界中,正则化参数从底层的离散化中解脱出来。推导后检界的一个重要组成部分是适当的Fortin算子的构造,它允许我们控制由对偶模的离散化引起的振荡误差。此外,变分框架允许我们为离散问题设计预条件,这些问题的应用可以在线性时间内执行,并且预条件系统的条件数与正则化连续问题的条件数一致成比例。特别地,我们基于后验误差范围为迭代求解器提供了合适的停止准则。所提出的数值实验量化了理论发现,并证明了数值格式与潜在的离散化和正则化有关的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信