{"title":"FRACTURE PARAMETERS EVALUATION FOR THE CRACKED NONHOMOGENEOUS ENAMEL BASED ON THE FINITE ELEMENT METHOD AND VIRTUAL CRACK CLOSURE TECHNIQUE","authors":"Y. Cai, Liming Zhou, Ming Li","doi":"10.22190/fume210619072c","DOIUrl":null,"url":null,"abstract":"To accurately solve the fracture parameters of enamel, we have established computational nonhomogeneous enamel models and constructed the fracture element of enamel dumb nodes, based on the enamel mineral concentration, nonhomogeneous mechanical properties, and virtual crack closure technique. Through the commercial finite element software ABAQUS and the fracture element of the enamel dumb nodes, we have established the user subroutines UMAT and UEL, which enabled solving of the energy release rates of the nonhomogeneous enamel structure with cracks. The stress intensity factors of central cracks, three-point bend and compact stretched enamels, and double-edge notched stretched enamels are determined. By comparing them with analytical solutions, we have proved that the fracture element of the enamel dumb nodes is highly accurate, simple, and convenient. In addition, the cracks can be other elements rather than singular or special elements; they show versatility and other advantages. The stress intensity factor of the dental enamel can be solved more realistically. Thus, a new numerical method for prevention and treatment of dental diseases is provided.","PeriodicalId":51338,"journal":{"name":"Facta Universitatis-Series Mechanical Engineering","volume":"52 1","pages":""},"PeriodicalIF":10.1000,"publicationDate":"2023-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Facta Universitatis-Series Mechanical Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.22190/fume210619072c","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 1
Abstract
To accurately solve the fracture parameters of enamel, we have established computational nonhomogeneous enamel models and constructed the fracture element of enamel dumb nodes, based on the enamel mineral concentration, nonhomogeneous mechanical properties, and virtual crack closure technique. Through the commercial finite element software ABAQUS and the fracture element of the enamel dumb nodes, we have established the user subroutines UMAT and UEL, which enabled solving of the energy release rates of the nonhomogeneous enamel structure with cracks. The stress intensity factors of central cracks, three-point bend and compact stretched enamels, and double-edge notched stretched enamels are determined. By comparing them with analytical solutions, we have proved that the fracture element of the enamel dumb nodes is highly accurate, simple, and convenient. In addition, the cracks can be other elements rather than singular or special elements; they show versatility and other advantages. The stress intensity factor of the dental enamel can be solved more realistically. Thus, a new numerical method for prevention and treatment of dental diseases is provided.
期刊介绍:
Facta Universitatis, Series: Mechanical Engineering (FU Mech Eng) is an open-access, peer-reviewed international journal published by the University of Niš in the Republic of Serbia. It publishes high-quality, refereed papers three times a year, encompassing original theoretical and/or practice-oriented research as well as extended versions of previously published conference papers. The journal's scope covers the entire spectrum of Mechanical Engineering. Papers undergo rigorous peer review to ensure originality, relevance, and readability, maintaining high publication standards while offering a timely, comprehensive, and balanced review process.