K. Lavanya, Sathyan Venkatanarayanan, Anay Anand Bhoraskar
{"title":"Real-Time Weather Analytics: An End-to-End Big Data Analytics Service Over Apach Spark With Kafka and Long Short-Term Memory Networks","authors":"K. Lavanya, Sathyan Venkatanarayanan, Anay Anand Bhoraskar","doi":"10.4018/IJWSR.2020100102","DOIUrl":null,"url":null,"abstract":"Weather forecasting is one of the biggest challenges that modern science is still contending with. The advent of high-power computing, technical advancement of data storage devices, and incumbent reduction in the storage cost have accelerated data collection to turmoil. In this background, many artificial intelligence techniques have been developed and opened interesting window of opportunity in hitherto difficult areas. India is on the cusp of a major technology overhaul with millions of people's data availability who were earlier unconnected with the internet. The country needs to fast forward the innovative use of available data. The proposed model endeavors to forecast temperature, precipitation, and other vital information for usability in the agrarian sector. This project intends to develop a robust weather forecast model that learns automatically from the daily feed of weather data that is input through a third-party API source. The weather feed is sourced from openweathermap, an online service that provides weather data, and is streamed into the forecast model through Kafka components. The LSTM neural network used by the forecast model is designed to continuously learn from predictions and perform actual analysis. The model can be architected to be implemented across very large applications having the capability to process large volumes of streamed or stored data.","PeriodicalId":54936,"journal":{"name":"International Journal of Web Services Research","volume":"13 1","pages":"15-31"},"PeriodicalIF":0.8000,"publicationDate":"2020-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Web Services Research","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.4018/IJWSR.2020100102","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 5
Abstract
Weather forecasting is one of the biggest challenges that modern science is still contending with. The advent of high-power computing, technical advancement of data storage devices, and incumbent reduction in the storage cost have accelerated data collection to turmoil. In this background, many artificial intelligence techniques have been developed and opened interesting window of opportunity in hitherto difficult areas. India is on the cusp of a major technology overhaul with millions of people's data availability who were earlier unconnected with the internet. The country needs to fast forward the innovative use of available data. The proposed model endeavors to forecast temperature, precipitation, and other vital information for usability in the agrarian sector. This project intends to develop a robust weather forecast model that learns automatically from the daily feed of weather data that is input through a third-party API source. The weather feed is sourced from openweathermap, an online service that provides weather data, and is streamed into the forecast model through Kafka components. The LSTM neural network used by the forecast model is designed to continuously learn from predictions and perform actual analysis. The model can be architected to be implemented across very large applications having the capability to process large volumes of streamed or stored data.
期刊介绍:
The International Journal of Web Services Research (IJWSR) is the first refereed, international publication featuring the latest research findings and industry solutions involving all aspects of Web services technology. This journal covers advancements, standards, and practices of Web services, as well as identifies emerging research topics and defines the future of Web services on grid computing, multimedia, and communication. IJWSR provides an open, formal publication for high quality articles developed by theoreticians, educators, developers, researchers, and practitioners for those desiring to stay abreast of challenges in Web services technology.