Divide and Conquer: Financial Ratios and Industry Returns Predictability

Daniele Bianchi, K. McAlinn
{"title":"Divide and Conquer: Financial Ratios and Industry Returns Predictability","authors":"Daniele Bianchi, K. McAlinn","doi":"10.2139/ssrn.3136368","DOIUrl":null,"url":null,"abstract":"We propose a novel approach for forecasting the equity premium within a data-rich environment based on ensembling small-scale linear models. The economic nature of the predictors is exploited to efficiently retain all of the information available without assuming a priori that some predictor might be irrelevant or easily reducible to a latent factor. Empirically, our results lend strong support for transparent linear predictive models and the use of accounting-based information when forecasting both industry and aggregate stock market excess returns: positive statistical and economic out-of-sample performance compared to sparse predictive regressions, forecast combination strategies and complex non-linear machine learning algorithms.","PeriodicalId":11495,"journal":{"name":"Econometric Modeling: Capital Markets - Forecasting eJournal","volume":"7 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Econometric Modeling: Capital Markets - Forecasting eJournal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3136368","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

We propose a novel approach for forecasting the equity premium within a data-rich environment based on ensembling small-scale linear models. The economic nature of the predictors is exploited to efficiently retain all of the information available without assuming a priori that some predictor might be irrelevant or easily reducible to a latent factor. Empirically, our results lend strong support for transparent linear predictive models and the use of accounting-based information when forecasting both industry and aggregate stock market excess returns: positive statistical and economic out-of-sample performance compared to sparse predictive regressions, forecast combination strategies and complex non-linear machine learning algorithms.
分而治之:财务比率和行业回报可预测性
我们提出了一种在数据丰富的环境中基于集成小规模线性模型预测股权溢价的新方法。预测器的经济性质被利用来有效地保留所有可用的信息,而不会先验地假设一些预测器可能是不相关的或容易简化为潜在因素。从经验上看,我们的研究结果有力地支持了透明的线性预测模型以及在预测行业和总体股市超额回报时使用基于会计的信息:与稀疏预测回归、预测组合策略和复杂的非线性机器学习算法相比,统计和经济样本外表现是积极的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信