Duo Property on the Monoid of Regular Elements

Pub Date : 2022-04-30 DOI:10.1142/s1005386722000165
C. Hong, H. Kim, N. Kim, T. Kwak, Yang Lee
{"title":"Duo Property on the Monoid of Regular Elements","authors":"C. Hong, H. Kim, N. Kim, T. Kwak, Yang Lee","doi":"10.1142/s1005386722000165","DOIUrl":null,"url":null,"abstract":"We study the right duo property on regular elements, and we say that rings with this property are right DR. It is first shown that the right duo property is preserved by right quotient rings when the given rings are right DR. We prove that the polynomial ring over a ring [Formula: see text] is right DR if and only if [Formula: see text] is commutative. It is also proved that for a prime number [Formula: see text], the group ring [Formula: see text] of a finite [Formula: see text]-group [Formula: see text] over a field [Formula: see text] of characteristic [Formula: see text] is right DR if and only if it is right duo, and that there exists a group ring [Formula: see text] that is neither DR nor duo when [Formula: see text] is not a [Formula: see text]-group.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1142/s1005386722000165","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

We study the right duo property on regular elements, and we say that rings with this property are right DR. It is first shown that the right duo property is preserved by right quotient rings when the given rings are right DR. We prove that the polynomial ring over a ring [Formula: see text] is right DR if and only if [Formula: see text] is commutative. It is also proved that for a prime number [Formula: see text], the group ring [Formula: see text] of a finite [Formula: see text]-group [Formula: see text] over a field [Formula: see text] of characteristic [Formula: see text] is right DR if and only if it is right duo, and that there exists a group ring [Formula: see text] that is neither DR nor duo when [Formula: see text] is not a [Formula: see text]-group.
分享
查看原文
正则元的一元上的对偶性质
本文研究了正则元素上的右对偶性质,给出了具有此性质的环是右DR。首先证明了当给定的环是右DR时,右商环保留了右对偶性质。证明了环上的多项式环[公式:见文]是右DR当且仅当[公式:见文]是可交换的。还证明了对于素数[公式:见文],在特征[公式:见文]的域[公式:见文]上的有限[公式:见文]群[公式:见文]的群环[公式:见文]当且仅当它是右对偶时是右DR,当[公式:见文]不是[公式:见文]群时存在一个既不是DR又不是对偶的群环[公式:见文]。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信