Deep Learning Oriented Channel Estimation for Interference Reduction for 5G

Swapna, Tangelapalli, P. Saradhi, R. Pandya, S. Iyer
{"title":"Deep Learning Oriented Channel Estimation for Interference Reduction for 5G","authors":"Swapna, Tangelapalli, P. Saradhi, R. Pandya, S. Iyer","doi":"10.1109/ICSES52305.2021.9633948","DOIUrl":null,"url":null,"abstract":"The increasing demand for high-speed data services, such as mobile gaming, Augmented/Virtual Reality (AR/VR) applications, vehicular communications, Internet of Everything (IoE), and haptic internet, results in high user densification in 5G and beyond networks. Moreover, the ultra-dense user scenarios raise the challenge of increased interference due to the highly shared spatial resources and unknown Channel State Information (CSI). Therefore, the optimal channel estimation helps in interference cancellation; however, the conventional channel estimation techniques are imperfect. On the other hand, the Deep Learning (DL) approach confers the potential solution for the channel estimation. In this paper, we implement the Convolutional Neural Network (CNN) dL architecture for channel estimation over the range of values of SNR for Single Input Single Output OFDM network. The proposed DL-CNN approach demonstrates a 94.30% reduction in Mean Square Error (MSE) compared to the traditional interpolation method-based channel estimation at different values of SNR considering the dense scenario.","PeriodicalId":6777,"journal":{"name":"2021 International Conference on Innovative Computing, Intelligent Communication and Smart Electrical Systems (ICSES)","volume":"15 1","pages":"1-4"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 International Conference on Innovative Computing, Intelligent Communication and Smart Electrical Systems (ICSES)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSES52305.2021.9633948","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The increasing demand for high-speed data services, such as mobile gaming, Augmented/Virtual Reality (AR/VR) applications, vehicular communications, Internet of Everything (IoE), and haptic internet, results in high user densification in 5G and beyond networks. Moreover, the ultra-dense user scenarios raise the challenge of increased interference due to the highly shared spatial resources and unknown Channel State Information (CSI). Therefore, the optimal channel estimation helps in interference cancellation; however, the conventional channel estimation techniques are imperfect. On the other hand, the Deep Learning (DL) approach confers the potential solution for the channel estimation. In this paper, we implement the Convolutional Neural Network (CNN) dL architecture for channel estimation over the range of values of SNR for Single Input Single Output OFDM network. The proposed DL-CNN approach demonstrates a 94.30% reduction in Mean Square Error (MSE) compared to the traditional interpolation method-based channel estimation at different values of SNR considering the dense scenario.
面向深度学习的5G信道估计干扰抑制
移动游戏、增强/虚拟现实(AR/VR)应用、车载通信、万物互联(IoE)和触觉互联网等高速数据业务的需求不断增长,导致5G及以上网络的用户密度很高。此外,由于高度共享的空间资源和未知的信道状态信息(CSI),超密集用户场景增加了干扰的挑战。因此,最优信道估计有助于消除干扰;然而,传统的信道估计技术并不完善。另一方面,深度学习(DL)方法为信道估计提供了潜在的解决方案。在本文中,我们实现了卷积神经网络(CNN) dL架构,用于单输入单输出OFDM网络在信噪比范围内的信道估计。在不同信噪比下,与传统的基于插值方法的信道估计相比,本文提出的DL-CNN方法在密集场景下的均方误差(MSE)降低了94.30%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信