An elementary solution to a problem in restricted partitions

N. Metropolis, P.R. Stein
{"title":"An elementary solution to a problem in restricted partitions","authors":"N. Metropolis,&nbsp;P.R. Stein","doi":"10.1016/S0021-9800(70)80091-6","DOIUrl":null,"url":null,"abstract":"<div><p>The present paper deals with an apparently hitherto untreated problem in the theory of restricted partitions: What is the number <em>T<sub>n</sub><sup>(r)</sup></em> of distinct partitions of the composite integer <em>nr</em> that can be made by partwise addition of <em>n</em>—not necessarily distinct—partitions of <em>r</em>? The answer is given in the form of a finite series of binomial coefficients multiplied by certain integer coefficients which dependend only on <em>r</em>:</p><p><span><span><span><math><mrow><msubsup><mi>T</mi><mi>n</mi><mrow><mrow><mo>(</mo><mi>r</mi><mo>)</mo></mrow></mrow></msubsup><mo>=</mo><mstyle><munderover><mo>∑</mo><mrow><mi>i</mi><mo>=</mo><mn>0</mn></mrow><mrow><mi>r</mi><mo>−</mo><mi>g</mi><mo>−</mo><mn>1</mn></mrow></munderover><mrow><msubsup><mi>c</mi><mi>i</mi><mrow><mrow><mo>(</mo><mi>r</mi><mo>)</mo></mrow></mrow></msubsup><mrow><mo>(</mo><mrow><mtable><mtr><mtd><mrow><mi>n</mi><mo>+</mo><mi>g</mi></mrow></mtd></mtr><mtr><mtd><mrow><mi>g</mi><mo>+</mo><mi>i</mi></mrow></mtd></mtr></mtable></mrow><mo>)</mo></mrow><mo>,</mo><mo>where</mo><mi>g</mi><mo>=</mo><mrow><mo>[</mo><mrow><mfrac><mrow><mi>r</mi><mo>+</mo><mn>1</mn></mrow><mn>2</mn></mfrac></mrow><mo>]</mo></mrow></mrow></mstyle></mrow></math></span></span></span></p><p>In general the non-vanishing <em>c<sub>i</sub><sup>(r)</sup></em> must be determined by direct calculation; in this paper we give them for all <em>r</em>≤11. Several other interpretations of <em>T<sub>n</sub><sup>(r)</sup></em> are given, and some additional open questions concerning the interpretation of the results are discussed.</p></div>","PeriodicalId":100765,"journal":{"name":"Journal of Combinatorial Theory","volume":"9 4","pages":"Pages 365-376"},"PeriodicalIF":0.0000,"publicationDate":"1970-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/S0021-9800(70)80091-6","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Combinatorial Theory","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021980070800916","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

The present paper deals with an apparently hitherto untreated problem in the theory of restricted partitions: What is the number Tn(r) of distinct partitions of the composite integer nr that can be made by partwise addition of n—not necessarily distinct—partitions of r? The answer is given in the form of a finite series of binomial coefficients multiplied by certain integer coefficients which dependend only on r:

Tn(r)=i=0rg1ci(r)(n+gg+i),whereg=[r+12]

In general the non-vanishing ci(r) must be determined by direct calculation; in this paper we give them for all r≤11. Several other interpretations of Tn(r) are given, and some additional open questions concerning the interpretation of the results are discussed.

受限分区问题的基本解
本文讨论了限制分割理论中一个迄今未被处理过的问题:复合整数nr的不同分割的数目n(r)是多少?这些不同的分割可以由n(n)的部分相加而不一定是r的不同分割?答案是由二项式系数的有限级数乘以只与r有关的整数系数的形式给出的:Tn(r)=∑i=0r−g−1ci(r)(n+gg+i),其中g=[r+12]一般来说,不消失的ci(r)必须由直接计算确定;本文给出了所有r≤11的条件。给出了对Tn(r)的几种其他解释,并讨论了有关结果解释的一些其他未决问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信