Chinese Prosodic Phrase Prediction Based on Shallow Semantic Features

Mao Ning
{"title":"Chinese Prosodic Phrase Prediction Based on Shallow Semantic Features","authors":"Mao Ning","doi":"10.1109/ICCC47050.2019.9064230","DOIUrl":null,"url":null,"abstract":"Syntactic structure features can improve the performance of prosodic phrase prediction. But only using the syntactic structure features, the performance of the algorithm is worse than the traditional text features. In this paper, we use the statistical machine learning method (CART, Adaboost and CRF) for prosodic phrase prediction based on the shallow semantic features. Experiments show that the shallow semantic features can effectively improve the performance of prosodic prediction model. And we also optimized the features, and divided them into the global and local semantic structures. The optimized experiments show that the optimized features can improve the performance of the model.","PeriodicalId":6739,"journal":{"name":"2019 IEEE 5th International Conference on Computer and Communications (ICCC)","volume":"46 1","pages":"245-250"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE 5th International Conference on Computer and Communications (ICCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCC47050.2019.9064230","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Syntactic structure features can improve the performance of prosodic phrase prediction. But only using the syntactic structure features, the performance of the algorithm is worse than the traditional text features. In this paper, we use the statistical machine learning method (CART, Adaboost and CRF) for prosodic phrase prediction based on the shallow semantic features. Experiments show that the shallow semantic features can effectively improve the performance of prosodic prediction model. And we also optimized the features, and divided them into the global and local semantic structures. The optimized experiments show that the optimized features can improve the performance of the model.
基于浅语义特征的汉语韵律短语预测
句法结构特征可以提高韵律短语预测的性能。但仅使用句法结构特征,算法的性能比传统的文本特征差。在本文中,我们使用统计机器学习方法(CART, Adaboost和CRF)进行基于浅语义特征的韵律短语预测。实验表明,浅层语义特征可以有效地提高韵律预测模型的性能。并对特征进行了优化,将其分为全局语义结构和局部语义结构。优化实验表明,优化后的特征可以提高模型的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信