Jorge Martínez-Guanter, M. Garrido-Izard, J. Agüera, C. Valero, M. Pérez-Ruiz
{"title":"Over-the-row harvester damage evaluation in super-high-density olive orchard by on-board sensing techniques","authors":"Jorge Martínez-Guanter, M. Garrido-Izard, J. Agüera, C. Valero, M. Pérez-Ruiz","doi":"10.1017/S2040470017000814","DOIUrl":null,"url":null,"abstract":"New Super-High-Density (SHD) olive orchards designed for mechanical harvesting are increasing very rapidly in Spain. Most studies have focused in effectively removing the olive fruit, however the machine needs to put significant amount of energy on the canopy that could result in structural damage or extra stress on the trees. During harvest, a series of 3-axis accelerometers were installed on the tree structure in order to register vibration patterns. A LiDAR (Light Detection and Ranging) and a camera sensing device were also mounted on a tractor. Before and after harvest measurements showed significant differences in the LiDAR and image data. A fast estimate of the damage produced by an over-the-row harvester with contactless sensing could be useful information for adjusting the machine parameters in each olive grove automatically in the future.","PeriodicalId":7228,"journal":{"name":"Advances in Animal Biosciences","volume":"22 1","pages":"487-491"},"PeriodicalIF":0.0000,"publicationDate":"2017-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Animal Biosciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/S2040470017000814","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
New Super-High-Density (SHD) olive orchards designed for mechanical harvesting are increasing very rapidly in Spain. Most studies have focused in effectively removing the olive fruit, however the machine needs to put significant amount of energy on the canopy that could result in structural damage or extra stress on the trees. During harvest, a series of 3-axis accelerometers were installed on the tree structure in order to register vibration patterns. A LiDAR (Light Detection and Ranging) and a camera sensing device were also mounted on a tractor. Before and after harvest measurements showed significant differences in the LiDAR and image data. A fast estimate of the damage produced by an over-the-row harvester with contactless sensing could be useful information for adjusting the machine parameters in each olive grove automatically in the future.