On factorizable classes of second order linear ordinary differential equations with rational functions coefficients

Q4 Mathematics
M. N. Hounkonnou, P. D. Sielenou
{"title":"On factorizable classes of second order linear ordinary differential equations with rational functions coefficients","authors":"M. N. Hounkonnou, P. D. Sielenou","doi":"10.55937/sut/1295965316","DOIUrl":null,"url":null,"abstract":"This paper addresses necessary and sufficient factorizability condi- tions for classes of second order linear ordinary differential equations (ODEs) characterized by the degrees of their corresponding polynomial functions coef- ficients. A pure algebraic method is used to solve a system of linear algebraic equations whose solutions satisfy a compatibility criterion and generate two first order differential operators factorizing the considered second order differ- ential operator. Concrete examples are probed, including special cases of Bocher ODEs like Heun, extensions of Wangerin and Heine's differential equations. AMS 2010 Mathematics Subject Classification. 26C15, 34-04, 34A05, 34A30, 47E05.","PeriodicalId":38708,"journal":{"name":"SUT Journal of Mathematics","volume":"71 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2010-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SUT Journal of Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.55937/sut/1295965316","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 1

Abstract

This paper addresses necessary and sufficient factorizability condi- tions for classes of second order linear ordinary differential equations (ODEs) characterized by the degrees of their corresponding polynomial functions coef- ficients. A pure algebraic method is used to solve a system of linear algebraic equations whose solutions satisfy a compatibility criterion and generate two first order differential operators factorizing the considered second order differ- ential operator. Concrete examples are probed, including special cases of Bocher ODEs like Heun, extensions of Wangerin and Heine's differential equations. AMS 2010 Mathematics Subject Classification. 26C15, 34-04, 34A05, 34A30, 47E05.
二阶有理函数系数线性常微分方程的可分解类
本文讨论了以多项式函数系数的次数为特征的二阶线性常微分方程的可因式分解的充分必要条件。用纯代数方法求解一类满足相容准则的线性代数方程组,并将所考虑的二阶微分算子因式分解为两个一阶微分算子。探讨了具体的例子,包括Bocher ode的特殊情况,如Heun, Wangerin的推广和Heine的微分方程。AMS 2010数学学科分类。26C15, 34-04, 34A05, 34A30, 47E05。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
SUT Journal of Mathematics
SUT Journal of Mathematics Mathematics-Mathematics (all)
CiteScore
0.30
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信