{"title":"Acidic Derivatives of Melamine as Template in Copolymerization of Aniline and Metanilic Acid","authors":"F. Khodadadi, P. Najafi Moghadam, M. Hashemi","doi":"10.1080/03602559.2017.1370102","DOIUrl":null,"url":null,"abstract":"ABSTRACT In this paper, new polymer composites were synthesized by template copolymerization of aniline and metanilic acid in the presence of prepared melamine triacetic acid and poly(melamine-co-citric acid) as polyacids and dopants. The properties of the poly(aniline-co-metanilic acid) composites were studied by Fourier transform infrared, X-ray diffraction, scanning electron microscope, CV, and differential scanning calorimeter analysis. The four-point probe technique was used for evaluating the electrical conductivity of the composites. The scanning electron micrographs disclosed that the products had the morphology with agglomerated distorted spherical shapes with the average size of 40–50 nm. Also, the solubility of the composites had been improved notably in organic solvents. GRAPHICAL ABSTRACT","PeriodicalId":20629,"journal":{"name":"Polymer-Plastics Technology and Engineering","volume":"4 1","pages":"965 - 974"},"PeriodicalIF":0.0000,"publicationDate":"2018-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polymer-Plastics Technology and Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/03602559.2017.1370102","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Materials Science","Score":null,"Total":0}
引用次数: 0
Abstract
ABSTRACT In this paper, new polymer composites were synthesized by template copolymerization of aniline and metanilic acid in the presence of prepared melamine triacetic acid and poly(melamine-co-citric acid) as polyacids and dopants. The properties of the poly(aniline-co-metanilic acid) composites were studied by Fourier transform infrared, X-ray diffraction, scanning electron microscope, CV, and differential scanning calorimeter analysis. The four-point probe technique was used for evaluating the electrical conductivity of the composites. The scanning electron micrographs disclosed that the products had the morphology with agglomerated distorted spherical shapes with the average size of 40–50 nm. Also, the solubility of the composites had been improved notably in organic solvents. GRAPHICAL ABSTRACT