{"title":"Comparative studies of the electroreduction of zinc ions from gluconate solutions","authors":"E. Rudnik, K. Chat","doi":"10.7494/MAFE.2019.45.1.19","DOIUrl":null,"url":null,"abstract":"This study considers the role of chloride and sulphate anions in the cathodic reduction of zinc ions from gluconate solutions (chloride, sulphate, chloride-sulphate). Cyclic potentiodynamic and potentiostatic polarization measurements, as well as chronoamperometric experiments, were performed. Electrochemical results were correlated with the speciation of the baths. The experiments revealed the inhibiting effect of sulphate ions on the cathodic process caused by the formation of stable neutral ZnSO4 complex in the sulphate-gluconate bath. It resulted in zinc deposition under a limiting current, with the release of metal cation as a rate-determining step. The less stable ZnGlu+ complex dominated both chloride-containing baths, thus the metal deposition ran under activation control. Independent of the solution composition, the nucleation of zinc occurred according to the instantaneous model.","PeriodicalId":18751,"journal":{"name":"Metallurgy and Foundry Engineering","volume":"10 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Metallurgy and Foundry Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7494/MAFE.2019.45.1.19","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
This study considers the role of chloride and sulphate anions in the cathodic reduction of zinc ions from gluconate solutions (chloride, sulphate, chloride-sulphate). Cyclic potentiodynamic and potentiostatic polarization measurements, as well as chronoamperometric experiments, were performed. Electrochemical results were correlated with the speciation of the baths. The experiments revealed the inhibiting effect of sulphate ions on the cathodic process caused by the formation of stable neutral ZnSO4 complex in the sulphate-gluconate bath. It resulted in zinc deposition under a limiting current, with the release of metal cation as a rate-determining step. The less stable ZnGlu+ complex dominated both chloride-containing baths, thus the metal deposition ran under activation control. Independent of the solution composition, the nucleation of zinc occurred according to the instantaneous model.