Segmentation Model for Noisy and Intensity Inhomogeneity Images via Logarithmic Density Function

Ali S, Dayyan B
{"title":"Segmentation Model for Noisy and Intensity Inhomogeneity Images via Logarithmic Density Function","authors":"Ali S, Dayyan B","doi":"10.4172/2168-9679.1000388","DOIUrl":null,"url":null,"abstract":"This manuscript is devoted to the study of a new image segmentation model for noisy and intensity inhomogeneity images based on logarithmic density function. Local image information is necessary for inhomogeneous images but at the same time, it is defective for noisy images as a consequence local information misguide the motion of active contour. However, the logarithmic function in our new proposed model is capable to capture minute details in images, while ignoring the noise in it which makes it robust in such kinds of images. Comparing with local Chan-Vese Model our new proposed model gives better performance treating noisy and intensity inhomogeneity images. Finally, experiments on some noisy and intensity inhomogeneity images show the robustness of our new proposed model.","PeriodicalId":15007,"journal":{"name":"Journal of Applied and Computational Mathematics","volume":"24 1","pages":"1-6"},"PeriodicalIF":0.0000,"publicationDate":"2018-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied and Computational Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4172/2168-9679.1000388","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

This manuscript is devoted to the study of a new image segmentation model for noisy and intensity inhomogeneity images based on logarithmic density function. Local image information is necessary for inhomogeneous images but at the same time, it is defective for noisy images as a consequence local information misguide the motion of active contour. However, the logarithmic function in our new proposed model is capable to capture minute details in images, while ignoring the noise in it which makes it robust in such kinds of images. Comparing with local Chan-Vese Model our new proposed model gives better performance treating noisy and intensity inhomogeneity images. Finally, experiments on some noisy and intensity inhomogeneity images show the robustness of our new proposed model.
基于对数密度函数的噪声和强度非均匀性图像分割模型
本文研究了一种新的基于对数密度函数的噪声和强度非均匀性图像分割模型。局部图像信息对于非均匀图像是必要的,但对于噪声图像,局部图像信息会误导活动轮廓的运动,因此局部图像信息的提取是有缺陷的。然而,我们新提出的模型中的对数函数能够捕获图像中的微小细节,同时忽略其中的噪声,这使得它在这类图像中具有鲁棒性。与局部Chan-Vese模型相比,该模型在处理噪声和强度非均匀性图像方面具有更好的性能。最后,在一些噪声和强度不均匀的图像上进行了实验,证明了该模型的鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信