On the P.Q.-Baer Skew Generalized Power Series Modules

Pub Date : 2022-07-26 DOI:10.1142/s100538672200030x
A. Majidinya
{"title":"On the P.Q.-Baer Skew Generalized Power Series Modules","authors":"A. Majidinya","doi":"10.1142/s100538672200030x","DOIUrl":null,"url":null,"abstract":"For a ring [Formula: see text] and a strictly totally ordered monoid [Formula: see text], let [Formula: see text] be a monoid homomorphism and [Formula: see text] an [Formula: see text]-weakly rigid right [Formula: see text]-module (i.e., for any elements [Formula: see text], [Formula: see text] and [Formula: see text], [Formula: see text] if and only if [Formula: see text]), where [Formula: see text] is the ring of ring endomorphisms of [Formula: see text]. It is shown that the skew generalized power series module [Formula: see text] is a principally quasi-Baer module if and only if the annihilator of every submodule generated by an [Formula: see text]-indexed subset of [Formula: see text] is generated by an idempotent as a right ideal of [Formula: see text]. As a consequence we deduce that for an [Formula: see text]-weakly rigid ring [Formula: see text], the skew generalized power series ring [Formula: see text] is right principally quasi-Baer if and only if [Formula: see text] is right principally quasi-Baer and any [Formula: see text]-indexed subset of right semicentral idempotents in [Formula: see text] has a generalized [Formula: see text]-indexed join in [Formula: see text]. The range of previous results in this area is expanded by these results.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1142/s100538672200030x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

For a ring [Formula: see text] and a strictly totally ordered monoid [Formula: see text], let [Formula: see text] be a monoid homomorphism and [Formula: see text] an [Formula: see text]-weakly rigid right [Formula: see text]-module (i.e., for any elements [Formula: see text], [Formula: see text] and [Formula: see text], [Formula: see text] if and only if [Formula: see text]), where [Formula: see text] is the ring of ring endomorphisms of [Formula: see text]. It is shown that the skew generalized power series module [Formula: see text] is a principally quasi-Baer module if and only if the annihilator of every submodule generated by an [Formula: see text]-indexed subset of [Formula: see text] is generated by an idempotent as a right ideal of [Formula: see text]. As a consequence we deduce that for an [Formula: see text]-weakly rigid ring [Formula: see text], the skew generalized power series ring [Formula: see text] is right principally quasi-Baer if and only if [Formula: see text] is right principally quasi-Baer and any [Formula: see text]-indexed subset of right semicentral idempotents in [Formula: see text] has a generalized [Formula: see text]-indexed join in [Formula: see text]. The range of previous results in this area is expanded by these results.
分享
查看原文
关于P.Q.-Baer偏广义幂级数模
对于一个环[公式:见文]和一个严格全序单群[公式:见文],设[公式:见文]是一个单群同态,且[公式:见文]和[公式:见文]-弱刚性右[公式:见文]-模(即对于任何元素[公式:见文],[公式:见文]和[公式:见文],[公式:见文]),其中[公式:见文]是[公式:见文]的环自同态的环。证明了斜广义幂级数模[公式:见文]是一个主要的拟baer模当且仅当由[公式:见文]的一个[公式:见文]的索引子集[公式:见文]生成的每个子模的湮灭子是由[公式:见文]的一个幂等右理想生成的。因此,我们推导出,对于一个[公式:见文]-弱刚环[公式:见文],偏广义幂级数环[公式:见文]当且仅当[公式:见文]-主要是准贝尔,且[公式:见文]中任何[公式:见文]-索引的右半心幂等元子集在[公式:见文]中有一个广义[公式:见文]-索引连接。这些结果扩大了这一领域以前结果的范围。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信