{"title":"On the P.Q.-Baer Skew Generalized Power Series Modules","authors":"A. Majidinya","doi":"10.1142/s100538672200030x","DOIUrl":null,"url":null,"abstract":"For a ring [Formula: see text] and a strictly totally ordered monoid [Formula: see text], let [Formula: see text] be a monoid homomorphism and [Formula: see text] an [Formula: see text]-weakly rigid right [Formula: see text]-module (i.e., for any elements [Formula: see text], [Formula: see text] and [Formula: see text], [Formula: see text] if and only if [Formula: see text]), where [Formula: see text] is the ring of ring endomorphisms of [Formula: see text]. It is shown that the skew generalized power series module [Formula: see text] is a principally quasi-Baer module if and only if the annihilator of every submodule generated by an [Formula: see text]-indexed subset of [Formula: see text] is generated by an idempotent as a right ideal of [Formula: see text]. As a consequence we deduce that for an [Formula: see text]-weakly rigid ring [Formula: see text], the skew generalized power series ring [Formula: see text] is right principally quasi-Baer if and only if [Formula: see text] is right principally quasi-Baer and any [Formula: see text]-indexed subset of right semicentral idempotents in [Formula: see text] has a generalized [Formula: see text]-indexed join in [Formula: see text]. The range of previous results in this area is expanded by these results.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1142/s100538672200030x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
For a ring [Formula: see text] and a strictly totally ordered monoid [Formula: see text], let [Formula: see text] be a monoid homomorphism and [Formula: see text] an [Formula: see text]-weakly rigid right [Formula: see text]-module (i.e., for any elements [Formula: see text], [Formula: see text] and [Formula: see text], [Formula: see text] if and only if [Formula: see text]), where [Formula: see text] is the ring of ring endomorphisms of [Formula: see text]. It is shown that the skew generalized power series module [Formula: see text] is a principally quasi-Baer module if and only if the annihilator of every submodule generated by an [Formula: see text]-indexed subset of [Formula: see text] is generated by an idempotent as a right ideal of [Formula: see text]. As a consequence we deduce that for an [Formula: see text]-weakly rigid ring [Formula: see text], the skew generalized power series ring [Formula: see text] is right principally quasi-Baer if and only if [Formula: see text] is right principally quasi-Baer and any [Formula: see text]-indexed subset of right semicentral idempotents in [Formula: see text] has a generalized [Formula: see text]-indexed join in [Formula: see text]. The range of previous results in this area is expanded by these results.