{"title":"Constraint Answer Set Programming: Integrational and Translational (or SMT-based) Approaches","authors":"Y. Lierler","doi":"10.1017/s1471068421000478","DOIUrl":null,"url":null,"abstract":"\n Constraint answer set programming or CASP, for short, is a hybrid approach in automated reasoning putting together the advances of distinct research areas such as answer set programming, constraint processing, and satisfiability modulo theories. CASP demonstrates promising results, including the development of a multitude of solvers: acsolver, clingcon, ezcsp, idp, inca, dingo, mingo, aspmt2smt, clingo[l,dl], and ezsmt. It opens new horizons for declarative programming applications such as solving complex train scheduling problems. Systems designed to find solutions to constraint answer set programs can be grouped according to their construction into, what we call, integrational or translational approaches. The focus of this paper is an overview of the key ingredients of the design of constraint answer set solvers drawing distinctions and parallels between integrational and translational approaches. The paper also provides a glimpse at the kind of programs its users develop by utilizing a CASP encoding of Traveling Salesman problem for illustration. In addition, we place the CASP technology on the map among its automated reasoning peers as well as discuss future possibilities for the development of CASP.","PeriodicalId":49436,"journal":{"name":"Theory and Practice of Logic Programming","volume":"26 1","pages":"195-225"},"PeriodicalIF":1.4000,"publicationDate":"2021-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theory and Practice of Logic Programming","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1017/s1471068421000478","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 4
Abstract
Constraint answer set programming or CASP, for short, is a hybrid approach in automated reasoning putting together the advances of distinct research areas such as answer set programming, constraint processing, and satisfiability modulo theories. CASP demonstrates promising results, including the development of a multitude of solvers: acsolver, clingcon, ezcsp, idp, inca, dingo, mingo, aspmt2smt, clingo[l,dl], and ezsmt. It opens new horizons for declarative programming applications such as solving complex train scheduling problems. Systems designed to find solutions to constraint answer set programs can be grouped according to their construction into, what we call, integrational or translational approaches. The focus of this paper is an overview of the key ingredients of the design of constraint answer set solvers drawing distinctions and parallels between integrational and translational approaches. The paper also provides a glimpse at the kind of programs its users develop by utilizing a CASP encoding of Traveling Salesman problem for illustration. In addition, we place the CASP technology on the map among its automated reasoning peers as well as discuss future possibilities for the development of CASP.
期刊介绍:
Theory and Practice of Logic Programming emphasises both the theory and practice of logic programming. Logic programming applies to all areas of artificial intelligence and computer science and is fundamental to them. Among the topics covered are AI applications that use logic programming, logic programming methodologies, specification, analysis and verification of systems, inductive logic programming, multi-relational data mining, natural language processing, knowledge representation, non-monotonic reasoning, semantic web reasoning, databases, implementations and architectures and constraint logic programming.