Determination of the Structure of Biological Macromolecular Particles Using X-Ray Lasers. Achievements and Prospects

Q3 Mathematics
T. Petrova, V. Lunin
{"title":"Determination of the Structure of Biological Macromolecular Particles Using X-Ray Lasers. Achievements and Prospects","authors":"T. Petrova, V. Lunin","doi":"10.17537/2020.15.195","DOIUrl":null,"url":null,"abstract":"\n X-ray diffraction analysis is the main experimental approach to determining the atomic structure of biological macromolecules and their complexes. The most serious limitation of its applicability, to date, is the need to prepare a sample of the object under study in the form of a single crystal, which is caused by the extremely low intensity of rays scattered by a single molecule. The commissioning of X-ray Free-Electron Lasers with their super-powerful (by many orders of magnitude exceeding the brightness of modern synchrotrons) and ultra-short (less than 100 fs) pulse is an experimental breakthrough that allows us to expect to obtain diffraction patterns from individual biological particles and then determine their structure. The first experimental results demonstrate the fundamental possibility of such an approach and are accompanied by the publication of a significant number of articles on various aspects of the development of the method. The purpose of this article is to discuss the current state of art in this area, evaluate the results achieved and discuss the prospects for further development of the method based on the analysis of publications in the world scientific literature of recent years and the experience of work carried out by the review authors and their colleagues.\n","PeriodicalId":53525,"journal":{"name":"Mathematical Biology and Bioinformatics","volume":"22 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Biology and Bioinformatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17537/2020.15.195","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

Abstract

X-ray diffraction analysis is the main experimental approach to determining the atomic structure of biological macromolecules and their complexes. The most serious limitation of its applicability, to date, is the need to prepare a sample of the object under study in the form of a single crystal, which is caused by the extremely low intensity of rays scattered by a single molecule. The commissioning of X-ray Free-Electron Lasers with their super-powerful (by many orders of magnitude exceeding the brightness of modern synchrotrons) and ultra-short (less than 100 fs) pulse is an experimental breakthrough that allows us to expect to obtain diffraction patterns from individual biological particles and then determine their structure. The first experimental results demonstrate the fundamental possibility of such an approach and are accompanied by the publication of a significant number of articles on various aspects of the development of the method. The purpose of this article is to discuss the current state of art in this area, evaluate the results achieved and discuss the prospects for further development of the method based on the analysis of publications in the world scientific literature of recent years and the experience of work carried out by the review authors and their colleagues.
用x射线激光测定生物大分子粒子的结构。成就与展望
x射线衍射分析是测定生物大分子及其复合物原子结构的主要实验方法。迄今为止,它的应用最严重的限制是需要以单晶的形式制备被研究对象的样品,这是由单个分子散射的光线强度极低造成的。x射线自由电子激光器的超级强大(亮度超过现代同步加速器的许多数量级)和超短(小于100秒)脉冲的调试是一个实验突破,使我们能够期望从单个生物粒子获得衍射图案,然后确定它们的结构。第一个实验结果证明了这种方法的基本可能性,并伴随着关于该方法发展的各个方面的大量文章的发表。本文的目的是在分析近年来世界科学文献的出版物和综述作者及其同事的工作经验的基础上,讨论该领域的现状,评价已取得的成果,并讨论该方法进一步发展的前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Mathematical Biology and Bioinformatics
Mathematical Biology and Bioinformatics Mathematics-Applied Mathematics
CiteScore
1.10
自引率
0.00%
发文量
13
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信