Harald Rupp, R. Bhandary, Amit Kulkarni, W. Binder
{"title":"Printable Electrolytes: Tuning 3D‐Printing by Multiple Hydrogen Bonds and Added Inorganic Lithium‐Salts","authors":"Harald Rupp, R. Bhandary, Amit Kulkarni, W. Binder","doi":"10.1002/admt.202200088","DOIUrl":null,"url":null,"abstract":"Here, the 3D‐printing of supramolecular polymer electrolytes is reported, able to be manufactured via 3D‐printing processes, additionally dynamically compensating for volume changes. A careful mechanical design, in addition to rheological effects observed for different additives to the electrolyte, is investigated and adjusted, in order to achieve printability via an extrusion process to generate a conductive electrode material. Qudruple‐hydrogen bonds (UPy) act as supramolecular entities for the desired dynamic properties to adjust printability, in addition to added LiTFSi‐salts to achieve ionic conductivities of ≈10–4 S cm–1 at T = 80 °C. Three different telechelic UPy‐PEO/PPO‐UPy‐polymers with molecular weights ranging from Mn = 600–1500 g mol−1 were investigated in view of their 3D‐printability by FDM‐processes. It is found that there are three effects counterbalancing the rheological properties of the polymers: besides temperatures, which can be used as a known tool to adjust melt‐rheology, also the addition of lithium‐salts in junction with the polymers crystallinity exerts a major toolbox to 3D‐print these electrolytes. Using specific compositions with Li/EO‐ratios from 20:1, 10:1, and 5:1, the rheological profile can be adjusted to reach the required printability window. AT‐IR‐investigations clearly indicate a weakening of the UPy‐bonds by the added Li+ ions, in addition to a reduction of the crystallinity of the PEO‐units, further changing the rheological profile. The so generated electrolytes are printable systems for novel electrolytes.","PeriodicalId":7200,"journal":{"name":"Advanced Materials & Technologies","volume":"4 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Materials & Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/admt.202200088","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8
Abstract
Here, the 3D‐printing of supramolecular polymer electrolytes is reported, able to be manufactured via 3D‐printing processes, additionally dynamically compensating for volume changes. A careful mechanical design, in addition to rheological effects observed for different additives to the electrolyte, is investigated and adjusted, in order to achieve printability via an extrusion process to generate a conductive electrode material. Qudruple‐hydrogen bonds (UPy) act as supramolecular entities for the desired dynamic properties to adjust printability, in addition to added LiTFSi‐salts to achieve ionic conductivities of ≈10–4 S cm–1 at T = 80 °C. Three different telechelic UPy‐PEO/PPO‐UPy‐polymers with molecular weights ranging from Mn = 600–1500 g mol−1 were investigated in view of their 3D‐printability by FDM‐processes. It is found that there are three effects counterbalancing the rheological properties of the polymers: besides temperatures, which can be used as a known tool to adjust melt‐rheology, also the addition of lithium‐salts in junction with the polymers crystallinity exerts a major toolbox to 3D‐print these electrolytes. Using specific compositions with Li/EO‐ratios from 20:1, 10:1, and 5:1, the rheological profile can be adjusted to reach the required printability window. AT‐IR‐investigations clearly indicate a weakening of the UPy‐bonds by the added Li+ ions, in addition to a reduction of the crystallinity of the PEO‐units, further changing the rheological profile. The so generated electrolytes are printable systems for novel electrolytes.