2D electrical resistivity imaging of tantalite-bearing veins in Kaiama, Nigeria

W. Raji, R. B. Bale
{"title":"2D electrical resistivity imaging of tantalite-bearing veins in Kaiama, Nigeria","authors":"W. Raji, R. B. Bale","doi":"10.1080/20909977.2022.2106666","DOIUrl":null,"url":null,"abstract":"ABSTRACT The utility of the electrical resistivity (ER) method of geophysics for delineating tantalite-rich zones is demonstrated. To avoid negative environmental consequences, the local authority refused the use of trial-and-error method by the artisanal and small-scale miners. 2D ER method was applied to delineate the locations and dimensions of the tantalite-rich zones. Data were acquired along nine profiles in the study area at predetermined locations, after reconnaissance field mapping, using SuperSting R8/IP Earth Resistivity Metre, 84 electrodes, and the full accessories. Each profile was 249 m long with 84 electrodes coupled to the ground at 3 m intervals on a straight line following the dipole–dipole electrode array. Data acquired were processed to obtain tomographic images of the subsurface. The results revealed low resistivity anomalies (1–60 Ωm) corresponding to tantalite-rich quartz veins that intruded into the high-resistive migmatite-gneisses-schist complex. The tantalite-rich zones were located at depths ranging from near-surface to about 45 m, their lengths and thicknesses range from 40 to 220 m and 3 to 32 m, respectively. A pit dug along profile six confirmed the low resistivity structures to be tantalite-rich quartz veins. Findings from the study are useful for economic evaluation of similar deposits, determining the extent of excavation required for mining, and planning land reclamation.","PeriodicalId":100964,"journal":{"name":"NRIAG Journal of Astronomy and Geophysics","volume":"62 1","pages":"306 - 312"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"NRIAG Journal of Astronomy and Geophysics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/20909977.2022.2106666","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

ABSTRACT The utility of the electrical resistivity (ER) method of geophysics for delineating tantalite-rich zones is demonstrated. To avoid negative environmental consequences, the local authority refused the use of trial-and-error method by the artisanal and small-scale miners. 2D ER method was applied to delineate the locations and dimensions of the tantalite-rich zones. Data were acquired along nine profiles in the study area at predetermined locations, after reconnaissance field mapping, using SuperSting R8/IP Earth Resistivity Metre, 84 electrodes, and the full accessories. Each profile was 249 m long with 84 electrodes coupled to the ground at 3 m intervals on a straight line following the dipole–dipole electrode array. Data acquired were processed to obtain tomographic images of the subsurface. The results revealed low resistivity anomalies (1–60 Ωm) corresponding to tantalite-rich quartz veins that intruded into the high-resistive migmatite-gneisses-schist complex. The tantalite-rich zones were located at depths ranging from near-surface to about 45 m, their lengths and thicknesses range from 40 to 220 m and 3 to 32 m, respectively. A pit dug along profile six confirmed the low resistivity structures to be tantalite-rich quartz veins. Findings from the study are useful for economic evaluation of similar deposits, determining the extent of excavation required for mining, and planning land reclamation.
尼日利亚Kaiama地区含钽矿脉的二维电阻率成像
摘要:本文论证了地球物理电阻率法在划定富钽矿带中的应用。为了避免对环境造成负面影响,地方当局拒绝手工和小规模采矿者使用试错法。利用二维ER法圈定了富钽带的位置和尺寸。利用SuperSting R8/IP地电阻率仪、84个电极和全部附件,在研究区预定位置沿9条剖面获取数据。每条剖面长249米,84个电极沿着偶极-偶极电极阵列以3米的间隔在一条直线上连接到地面。对获取的数据进行处理,获得地下层析成像。结果显示低电阻率异常(1-60 Ωm)对应于侵入高电阻率混杂岩片麻岩片岩杂岩的富钽石英脉。富钽矿带分布在近地表至45 m左右的深度,其长度和厚度分别为40 ~ 220 m和3 ~ 32 m。沿6号剖面开挖的一个坑证实了该低电阻率构造为富钽石英脉。研究结果对类似矿床的经济评价、确定采矿所需的挖掘范围和规划土地复垦都很有用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信