{"title":"Broadcasting‐induced colorings of preferential attachment trees","authors":"Colin Desmarais, Cecilia Holmgren, S. Wagner","doi":"10.1002/rsa.21142","DOIUrl":null,"url":null,"abstract":"We consider random two‐colorings of random linear preferential attachment trees, which includes recursive trees, plane‐oriented recursive trees, binary search trees, and a class of d‐ary trees. The random coloring is defined by assigning the root the color red or blue with equal probability, and all other vertices are assigned the color of their parent with probability p$$ p $$ and the other color otherwise. These colorings have been previously studied in other contexts, including Ising models and broadcasting, and can be considered as generalizations of bond percolation. With the help of Pólya urns, we prove limiting distributions, after proper rescalings, for the number of vertices, monochromatic subtrees, and leaves of each color, as well as the number of fringe subtrees with two‐colorings. Using methods from analytic combinatorics, we also provide precise descriptions of the limiting distribution after proper rescaling of the size of the root cluster; the largest monochromatic subtree containing the root.","PeriodicalId":54523,"journal":{"name":"Random Structures & Algorithms","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2021-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Random Structures & Algorithms","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1002/rsa.21142","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 1
Abstract
We consider random two‐colorings of random linear preferential attachment trees, which includes recursive trees, plane‐oriented recursive trees, binary search trees, and a class of d‐ary trees. The random coloring is defined by assigning the root the color red or blue with equal probability, and all other vertices are assigned the color of their parent with probability p$$ p $$ and the other color otherwise. These colorings have been previously studied in other contexts, including Ising models and broadcasting, and can be considered as generalizations of bond percolation. With the help of Pólya urns, we prove limiting distributions, after proper rescalings, for the number of vertices, monochromatic subtrees, and leaves of each color, as well as the number of fringe subtrees with two‐colorings. Using methods from analytic combinatorics, we also provide precise descriptions of the limiting distribution after proper rescaling of the size of the root cluster; the largest monochromatic subtree containing the root.
期刊介绍:
It is the aim of this journal to meet two main objectives: to cover the latest research on discrete random structures, and to present applications of such research to problems in combinatorics and computer science. The goal is to provide a natural home for a significant body of current research, and a useful forum for ideas on future studies in randomness.
Results concerning random graphs, hypergraphs, matroids, trees, mappings, permutations, matrices, sets and orders, as well as stochastic graph processes and networks are presented with particular emphasis on the use of probabilistic methods in combinatorics as developed by Paul Erdõs. The journal focuses on probabilistic algorithms, average case analysis of deterministic algorithms, and applications of probabilistic methods to cryptography, data structures, searching and sorting. The journal also devotes space to such areas of probability theory as percolation, random walks and combinatorial aspects of probability.