A new parametrization for ideal classes in rings defined by binary forms, and applications

IF 1.2 1区 数学 Q1 MATHEMATICS
A. Swaminathan
{"title":"A new parametrization for ideal classes in rings defined by binary forms, and applications","authors":"A. Swaminathan","doi":"10.1515/crelle-2023-0006","DOIUrl":null,"url":null,"abstract":"Abstract We give a parametrization of square roots of the ideal class of the inverse different of rings defined by binary forms in terms of the orbits of a coregular representation. This parametrization, which can be construed as a new integral model of a “higher composition law” discovered by Bhargava and generalized by Wood, was the missing ingredient needed to solve a range of previously intractable open problems concerning distributions of class groups, Selmer groups, and related objects. For instance, in this paper, we apply the parametrization to bound the average size of the 2-class group in families of number fields defined by binary n-ic forms, where n ≥ 3 {n\\geq 3} is an arbitrary integer, odd or even; in the paper [A. Swaminathan, Most integral odd-degree binary forms fail to properly represent a square, preprint 2020], we applied it to prove that most integral odd-degree binary forms fail to primitively represent a square; and in the paper [M. Bhargava, A. Shankar and A. Swaminathan, The second moment of the size of the 2-Selmer group of elliptic curves, preprint 2021], joint with Bhargava and Shankar, we applied it to bound the second moment of the size of the 2-Selmer group of elliptic curves.","PeriodicalId":54896,"journal":{"name":"Journal fur die Reine und Angewandte Mathematik","volume":"29 1","pages":"143 - 191"},"PeriodicalIF":1.2000,"publicationDate":"2023-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal fur die Reine und Angewandte Mathematik","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/crelle-2023-0006","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

Abstract

Abstract We give a parametrization of square roots of the ideal class of the inverse different of rings defined by binary forms in terms of the orbits of a coregular representation. This parametrization, which can be construed as a new integral model of a “higher composition law” discovered by Bhargava and generalized by Wood, was the missing ingredient needed to solve a range of previously intractable open problems concerning distributions of class groups, Selmer groups, and related objects. For instance, in this paper, we apply the parametrization to bound the average size of the 2-class group in families of number fields defined by binary n-ic forms, where n ≥ 3 {n\geq 3} is an arbitrary integer, odd or even; in the paper [A. Swaminathan, Most integral odd-degree binary forms fail to properly represent a square, preprint 2020], we applied it to prove that most integral odd-degree binary forms fail to primitively represent a square; and in the paper [M. Bhargava, A. Shankar and A. Swaminathan, The second moment of the size of the 2-Selmer group of elliptic curves, preprint 2021], joint with Bhargava and Shankar, we applied it to bound the second moment of the size of the 2-Selmer group of elliptic curves.
由二元形式定义的环上理想类的一种新的参数化方法及其应用
摘要本文用共正则表示的轨道给出了由二元形式定义的环的逆差的理想类的平方根的参数化。这种参数化可以解释为Bhargava发现并由Wood推广的“更高组成定律”的新积分模型,是解决一系列先前棘手的关于类群、Selmer群和相关对象分布的开放问题所需的缺失成分。例如,在二元n-ic形式的数域族中,当n≥{3n\geq 3}是奇数或偶数的任意整数
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.50
自引率
6.70%
发文量
97
审稿时长
6-12 weeks
期刊介绍: The Journal für die reine und angewandte Mathematik is the oldest mathematics periodical still in existence. Founded in 1826 by August Leopold Crelle and edited by him until his death in 1855, it soon became widely known under the name of Crelle"s Journal. In the almost 180 years of its existence, Crelle"s Journal has developed to an outstanding scholarly periodical with one of the worldwide largest circulations among mathematics journals. It belongs to the very top mathematics periodicals, as listed in ISI"s Journal Citation Report.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信