Classifiability of crossed products by nonamenable groups

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Eusebio Gardella, S. Geffen, J. Kranz, P. Naryshkin
{"title":"Classifiability of crossed products by nonamenable groups","authors":"Eusebio Gardella, S. Geffen, J. Kranz, P. Naryshkin","doi":"10.1515/crelle-2023-0012","DOIUrl":null,"url":null,"abstract":"Abstract We show that all amenable, minimal actions of a large class of nonamenable countable groups on compact metric spaces have dynamical comparison. This class includes all nonamenable hyperbolic groups, many HNN-extensions, nonamenable Baumslag–Solitar groups, a large class of amalgamated free products, lattices in many Lie groups, A ~ 2 {\\widetilde{A}_{2}} -groups, as well as direct products of the above with arbitrary countable groups. As a consequence, crossed products by amenable, minimal and topologically free actions of such groups on compact metric spaces are Kirchberg algebras in the UCT class, and are therefore classified by K-theory.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2022-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/crelle-2023-0012","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 9

Abstract

Abstract We show that all amenable, minimal actions of a large class of nonamenable countable groups on compact metric spaces have dynamical comparison. This class includes all nonamenable hyperbolic groups, many HNN-extensions, nonamenable Baumslag–Solitar groups, a large class of amalgamated free products, lattices in many Lie groups, A ~ 2 {\widetilde{A}_{2}} -groups, as well as direct products of the above with arbitrary countable groups. As a consequence, crossed products by amenable, minimal and topologically free actions of such groups on compact metric spaces are Kirchberg algebras in the UCT class, and are therefore classified by K-theory.
不可服从群的交叉产物的可分类性
摘要证明了紧度量空间上一大类不可调可数群的所有可调极小作用都具有动态比较。这类包括所有不可调节的双曲群,许多hnn -扩展,不可调节的Baumslag-Solitar群,一大类合并自由积,许多李群中的格,a ~ 2 {\wide}_{2}}群,以及以上与任意可数群的直接积。因此,这些群在紧度量空间上的可服从的、极小的和拓扑自由的交叉积是UCT类中的Kirchberg代数,因此可以用k理论分类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信