{"title":"Substitutional effect of Ni on different properties of ZnO nanocrystals","authors":"H. Khawal, U. Gawai, B. Dole","doi":"10.1063/1.4917781","DOIUrl":null,"url":null,"abstract":"Samples of pure and Ni doped ZnO nanocrystals with nominal compositions (x = 0.00, 0.03, 0.05) were successfully synthesized by Co-precipitation method. These samples were characterized by X-ray diffraction (XRD), Scanning Electron Microscopy (SEM) and Fourier Transform Infrared Spectrometer (FTIR). From XRD patterns it is confirmed that all samples have hexagonal (wurtzite) structure without formation any secondary phases. Atomic packing fraction (APF) and c/a ratio were calculated using XRD data. The lattice parameters of samples decrease with increasing Ni concentration. The average crystalline size was calculated by Scherrer’s formula and it is found that the average crystalline size is in the range 43-56 nm. The SEM micrographs of samples show the agglomeration of nanocrystals. Chemical species of the samples were detected using FTIR spectra. It confirms the formation of ZnO with the stretching vibrational mode around at 512 cm−1.","PeriodicalId":16850,"journal":{"name":"Journal of Physics C: Solid State Physics","volume":"41 1","pages":"050140"},"PeriodicalIF":0.0000,"publicationDate":"2015-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physics C: Solid State Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1063/1.4917781","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
Samples of pure and Ni doped ZnO nanocrystals with nominal compositions (x = 0.00, 0.03, 0.05) were successfully synthesized by Co-precipitation method. These samples were characterized by X-ray diffraction (XRD), Scanning Electron Microscopy (SEM) and Fourier Transform Infrared Spectrometer (FTIR). From XRD patterns it is confirmed that all samples have hexagonal (wurtzite) structure without formation any secondary phases. Atomic packing fraction (APF) and c/a ratio were calculated using XRD data. The lattice parameters of samples decrease with increasing Ni concentration. The average crystalline size was calculated by Scherrer’s formula and it is found that the average crystalline size is in the range 43-56 nm. The SEM micrographs of samples show the agglomeration of nanocrystals. Chemical species of the samples were detected using FTIR spectra. It confirms the formation of ZnO with the stretching vibrational mode around at 512 cm−1.