A Generalized CUR decomposition for matrix pairs

IF 1.9 Q1 MATHEMATICS, APPLIED
Perfect Y. Gidisu, M. Hochstenbach
{"title":"A Generalized CUR decomposition for matrix pairs","authors":"Perfect Y. Gidisu, M. Hochstenbach","doi":"10.1137/21m1432119","DOIUrl":null,"url":null,"abstract":"We propose a generalized CUR (GCUR) decomposition for matrix pairs (A,B). Given matrices A and B with the same number of columns, such a decomposition provides low-rank approximations of both matrices simultaneously, in terms of some of their rows and columns. We obtain the indices for selecting the subset of rows and columns of the original matrices using the discrete empirical interpolation method (DEIM) on the generalized singular vectors. When B is square and nonsingular, there are close connections between the GCUR of (A,B) and the DEIM-induced CUR of AB−1. When B is the identity, the GCUR decomposition of A coincides with the DEIM-induced CUR decomposition of A. We also show similar connection between the GCUR of (A,B) and the CUR of AB for a nonsquare but full-rank matrix B, where B denotes the Moore–Penrose pseudoinverse of B. While a CUR decomposition acts on one data set, a GCUR factorization jointly decomposes two data sets. The algorithm may be suitable for applications where one is interested in extracting the most discriminative features from one data set relative to another data set. In numerical experiments, we demonstrate the advantages of the new method over the standard CUR approximation; for recovering data perturbed with colored noise and subgroup discovery.","PeriodicalId":74797,"journal":{"name":"SIAM journal on mathematics of data science","volume":"40 1","pages":"386-409"},"PeriodicalIF":1.9000,"publicationDate":"2021-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIAM journal on mathematics of data science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1137/21m1432119","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 7

Abstract

We propose a generalized CUR (GCUR) decomposition for matrix pairs (A,B). Given matrices A and B with the same number of columns, such a decomposition provides low-rank approximations of both matrices simultaneously, in terms of some of their rows and columns. We obtain the indices for selecting the subset of rows and columns of the original matrices using the discrete empirical interpolation method (DEIM) on the generalized singular vectors. When B is square and nonsingular, there are close connections between the GCUR of (A,B) and the DEIM-induced CUR of AB−1. When B is the identity, the GCUR decomposition of A coincides with the DEIM-induced CUR decomposition of A. We also show similar connection between the GCUR of (A,B) and the CUR of AB for a nonsquare but full-rank matrix B, where B denotes the Moore–Penrose pseudoinverse of B. While a CUR decomposition acts on one data set, a GCUR factorization jointly decomposes two data sets. The algorithm may be suitable for applications where one is interested in extracting the most discriminative features from one data set relative to another data set. In numerical experiments, we demonstrate the advantages of the new method over the standard CUR approximation; for recovering data perturbed with colored noise and subgroup discovery.
矩阵对的广义CUR分解
我们提出了矩阵对(a,B)的广义CUR (GCUR)分解。给定具有相同列数的矩阵A和B,这样的分解同时提供两个矩阵的低秩近似,就它们的一些行和列而言。利用广义奇异向量上的离散经验插值方法(DEIM),得到了选择原始矩阵行和列子集的指标。当B为方形且非奇异时,(A,B)的GCUR与AB−1的deim诱导的CUR之间存在密切联系。当B是单位矩阵时,A的GCUR分解与A的deim诱导的CUR分解是一致的。对于非平方全秩矩阵B, (A,B)的GCUR与AB的CUR之间也有类似的联系,其中B表示B的Moore-Penrose伪逆。而CUR分解作用于一个数据集,而GCUR分解联合分解两个数据集。该算法可能适用于从一个数据集相对于另一个数据集提取最具区别性特征的应用。在数值实验中,我们证明了新方法相对于标准CUR近似的优点;用于受彩色噪声干扰的数据恢复和子群发现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信