Evaluating the Efficiency of Decision Making Units in Fuzzy two-stage DEA Models

IF 1.3 Q2 MATHEMATICS, APPLIED
R. A. Shureshjani, S. Askarinejad, A. Foroughi
{"title":"Evaluating the Efficiency of Decision Making Units in Fuzzy two-stage DEA Models","authors":"R. A. Shureshjani, S. Askarinejad, A. Foroughi","doi":"10.1080/16168658.2022.2152921","DOIUrl":null,"url":null,"abstract":"Data envelopment analysis (DEA) is an optimization method to assess the efficiency of decision-making units with multiple-inputs/multiple-outputs assumption. Most real-life issues contain more than one stage unit which needs multiple-stage data envelopment analysis models to be solved. Moreover, the inputs and outputs of the units are rarely measured accurately in real-life problems, hence fuzzy data envelopment analysis approaches can be significantly helpful in calculating efficiency scores. In this study, an approach for evaluating the performance of decision-making units (DMUs) in fuzzy two-stage DEA models is developed. The developed model is a parametric program based on alpha-cuts. The dependence on alpha allows the manager to compare and rank DMUs based on his/her degree of certainty and after the selection of alpha, our proposed model becomes linear. Furthermore, a theorem is proposed and proved for conventional multiplicative two-stage DEA models with the assumption of Variable Returns to Scale. This theorem can be used to evaluate the correctness of the results. Finally, by two illustrative examples, the ability of the proposed approach to solve fuzzy two-stage DEA models is shown, and the obtained results are compared to that of some other methods in this field.","PeriodicalId":37623,"journal":{"name":"Fuzzy Information and Engineering","volume":"7 1","pages":"291 - 313"},"PeriodicalIF":1.3000,"publicationDate":"2022-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fuzzy Information and Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/16168658.2022.2152921","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 1

Abstract

Data envelopment analysis (DEA) is an optimization method to assess the efficiency of decision-making units with multiple-inputs/multiple-outputs assumption. Most real-life issues contain more than one stage unit which needs multiple-stage data envelopment analysis models to be solved. Moreover, the inputs and outputs of the units are rarely measured accurately in real-life problems, hence fuzzy data envelopment analysis approaches can be significantly helpful in calculating efficiency scores. In this study, an approach for evaluating the performance of decision-making units (DMUs) in fuzzy two-stage DEA models is developed. The developed model is a parametric program based on alpha-cuts. The dependence on alpha allows the manager to compare and rank DMUs based on his/her degree of certainty and after the selection of alpha, our proposed model becomes linear. Furthermore, a theorem is proposed and proved for conventional multiplicative two-stage DEA models with the assumption of Variable Returns to Scale. This theorem can be used to evaluate the correctness of the results. Finally, by two illustrative examples, the ability of the proposed approach to solve fuzzy two-stage DEA models is shown, and the obtained results are compared to that of some other methods in this field.
模糊两阶段DEA模型中决策单元效率的评价
数据包络分析(DEA)是一种在多输入/多输出假设下评估决策单元效率的优化方法。大多数现实问题包含多个阶段单元,需要多级数据包络分析模型来解决。此外,在现实问题中,单元的输入和输出很少被准确测量,因此模糊数据包络分析方法可以在计算效率分数方面有很大帮助。本文提出了一种模糊两阶段DEA模型中决策单元绩效评价方法。所开发的模型是一个基于α -切割的参数化程序。对alpha的依赖允许管理者根据他/她的确定性程度对dmu进行比较和排序,在选择alpha之后,我们提出的模型变成线性的。在此基础上,提出并证明了传统乘式两阶段DEA模型在变规模收益假设下的一个定理。这个定理可用来评价结果的正确性。最后,通过两个实例验证了该方法求解模糊两阶段DEA模型的能力,并将所得结果与该领域的其他方法进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.30
自引率
0.00%
发文量
13
审稿时长
40 weeks
期刊介绍: Fuzzy Information and Engineering—An International Journal wants to provide a unified communication platform for researchers in a wide area of topics from pure and applied mathematics, computer science, engineering, and other related fields. While also accepting fundamental work, the journal focuses on applications. Research papers, short communications, and reviews are welcome. Technical topics within the scope include: (1) Fuzzy Information a. Fuzzy information theory and information systems b. Fuzzy clustering and classification c. Fuzzy information processing d. Hardware and software co-design e. Fuzzy computer f. Fuzzy database and data mining g. Fuzzy image processing and pattern recognition h. Fuzzy information granulation i. Knowledge acquisition and representation in fuzzy information (2) Fuzzy Sets and Systems a. Fuzzy sets b. Fuzzy analysis c. Fuzzy topology and fuzzy mapping d. Fuzzy equation e. Fuzzy programming and optimal f. Fuzzy probability and statistic g. Fuzzy logic and algebra h. General systems i. Fuzzy socioeconomic system j. Fuzzy decision support system k. Fuzzy expert system (3) Soft Computing a. Soft computing theory and foundation b. Nerve cell algorithms c. Genetic algorithms d. Fuzzy approximation algorithms e. Computing with words and Quantum computation (4) Fuzzy Engineering a. Fuzzy control b. Fuzzy system engineering c. Fuzzy knowledge engineering d. Fuzzy management engineering e. Fuzzy design f. Fuzzy industrial engineering g. Fuzzy system modeling (5) Fuzzy Operations Research [...] (6) Artificial Intelligence [...] (7) Others [...]
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信