Missing Data Imputation: A Survey

IF 0.6 Q4 COMPUTER SCIENCE, INFORMATION SYSTEMS
B. Kelkar
{"title":"Missing Data Imputation: A Survey","authors":"B. Kelkar","doi":"10.4018/ijdsst.292446","DOIUrl":null,"url":null,"abstract":"Many real world datasets may contain missing values for various reasons. These incomplete datasets can pose severe issues to the underlying machine learning algorithms and decision support systems. It may result in high computational cost, skewed output and invalid deductions. Various solutions exist to mitigate this issue; the most popular strategy is to estimate the missing values by applying inferential techniques such as linear regression, decision trees or Bayesian inference. In this paper, the missing data problem is discussed in detail with a comprehensive review of the approaches to tackle it. The paper concludes with a discussion on the effectiveness of three imputation methods namely, imputation based on Multiple Linear Regression (MLR), Predictive Mean Matching (PMM) and Classification And Regression Tree (CART) in the context of subspace clustering. The experimental results obtained on real benchmark datasets and high-dimensional synthetic datasets highlight that, MLR based imputation method is more efficient on high-dimensional incomplete datasets.","PeriodicalId":42414,"journal":{"name":"International Journal of Decision Support System Technology","volume":"44 1","pages":"1-20"},"PeriodicalIF":0.6000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Decision Support System Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/ijdsst.292446","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 1

Abstract

Many real world datasets may contain missing values for various reasons. These incomplete datasets can pose severe issues to the underlying machine learning algorithms and decision support systems. It may result in high computational cost, skewed output and invalid deductions. Various solutions exist to mitigate this issue; the most popular strategy is to estimate the missing values by applying inferential techniques such as linear regression, decision trees or Bayesian inference. In this paper, the missing data problem is discussed in detail with a comprehensive review of the approaches to tackle it. The paper concludes with a discussion on the effectiveness of three imputation methods namely, imputation based on Multiple Linear Regression (MLR), Predictive Mean Matching (PMM) and Classification And Regression Tree (CART) in the context of subspace clustering. The experimental results obtained on real benchmark datasets and high-dimensional synthetic datasets highlight that, MLR based imputation method is more efficient on high-dimensional incomplete datasets.
缺失数据输入:一项调查
由于各种原因,许多真实世界的数据集可能包含缺失值。这些不完整的数据集可能会给潜在的机器学习算法和决策支持系统带来严重的问题。它可能导致高计算成本,倾斜的输出和无效的扣除。有多种解决方案可以缓解这个问题;最流行的策略是通过应用推理技术,如线性回归、决策树或贝叶斯推理来估计缺失值。本文详细讨论了数据丢失问题,并对解决该问题的方法进行了全面回顾。最后讨论了基于多元线性回归(MLR)、预测均值匹配(PMM)和分类回归树(CART)三种方法在子空间聚类环境下的有效性。在真实基准数据集和高维合成数据集上的实验结果表明,基于MLR的插值方法在高维不完整数据集上更有效。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
International Journal of Decision Support System Technology
International Journal of Decision Support System Technology COMPUTER SCIENCE, INFORMATION SYSTEMS-
CiteScore
2.20
自引率
18.20%
发文量
40
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信