3D teleimmersive activity classification based on application-system metadata

Aadhar Jain, A. Arefin, Raoul Rivas, Chien-Nan Chen, K. Nahrstedt
{"title":"3D teleimmersive activity classification based on application-system metadata","authors":"Aadhar Jain, A. Arefin, Raoul Rivas, Chien-Nan Chen, K. Nahrstedt","doi":"10.1145/2502081.2502194","DOIUrl":null,"url":null,"abstract":"Being able to detect and recognize human activities is essential for 3D collaborative applications for efficient quality of service provisioning and device management. A broad range of research has been devoted to analyze media data to identify human activity, which requires the knowledge of data format, application-specific coding technique and computationally expensive image analysis. In this paper, we propose a human activity detection technique based on application generated metadata and related system metadata. Our approach does not depend on specific data format or coding technique. We evaluate our algorithm with different cyber-physical setups, and show that we can achieve very high accuracy (above 97%) by using a good learning model.","PeriodicalId":20448,"journal":{"name":"Proceedings of the 21st ACM international conference on Multimedia","volume":"24 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2013-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 21st ACM international conference on Multimedia","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2502081.2502194","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

Being able to detect and recognize human activities is essential for 3D collaborative applications for efficient quality of service provisioning and device management. A broad range of research has been devoted to analyze media data to identify human activity, which requires the knowledge of data format, application-specific coding technique and computationally expensive image analysis. In this paper, we propose a human activity detection technique based on application generated metadata and related system metadata. Our approach does not depend on specific data format or coding technique. We evaluate our algorithm with different cyber-physical setups, and show that we can achieve very high accuracy (above 97%) by using a good learning model.
基于应用系统元数据的三维远程沉浸式活动分类
能够检测和识别人类活动对于3D协作应用程序至关重要,以实现高效的服务提供和设备管理质量。广泛的研究致力于分析媒体数据以识别人类活动,这需要数据格式的知识,特定应用的编码技术和计算昂贵的图像分析。本文提出了一种基于应用生成元数据和相关系统元数据的人类活动检测技术。我们的方法不依赖于特定的数据格式或编码技术。我们用不同的网络物理设置评估了我们的算法,并表明通过使用良好的学习模型,我们可以达到非常高的准确率(97%以上)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信