SnFFT: a Julia toolkit for Fourier analysis of functions over permutations

Gregory Plumb, D. Pachauri, R. Kondor, Vikas Singh
{"title":"SnFFT: a Julia toolkit for Fourier analysis of functions over permutations","authors":"Gregory Plumb, D. Pachauri, R. Kondor, Vikas Singh","doi":"10.5555/2789272.2912109","DOIUrl":null,"url":null,"abstract":"SnFFT is an easy to use software library written in the Julia language to facilitate Fourier analysis on the symmetric group (set of permutations) of degree n, denoted Sn and make it more easily deployable within statistical machine learning algorithms. Our implementation internally creates the irreducible matrix representations of Sn, and efficiently computes fast Fourier transforms (FFTs) and inverse fast Fourier transforms (iFFTs). Advanced users can achieve scalability and promising practical performance by exploiting various other forms of sparsity. Further, the library also supports the partial inverse Fourier transforms which utilizes the smoothness properties of functions by maintaining only the first few Fourier coefficients. Out of the box, SnFFT currently offers two non-trivial operations for functions defined on Sn, namely convolution and correlation. While the potential applicability of SnFFT is fairly broad, as an example, we show how it can be used for clustering ranked data, where each ranking is modeled as a distribution on Sn.","PeriodicalId":14794,"journal":{"name":"J. Mach. Learn. Res.","volume":"7 1","pages":"3469-3473"},"PeriodicalIF":0.0000,"publicationDate":"2015-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"J. Mach. Learn. Res.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5555/2789272.2912109","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

SnFFT is an easy to use software library written in the Julia language to facilitate Fourier analysis on the symmetric group (set of permutations) of degree n, denoted Sn and make it more easily deployable within statistical machine learning algorithms. Our implementation internally creates the irreducible matrix representations of Sn, and efficiently computes fast Fourier transforms (FFTs) and inverse fast Fourier transforms (iFFTs). Advanced users can achieve scalability and promising practical performance by exploiting various other forms of sparsity. Further, the library also supports the partial inverse Fourier transforms which utilizes the smoothness properties of functions by maintaining only the first few Fourier coefficients. Out of the box, SnFFT currently offers two non-trivial operations for functions defined on Sn, namely convolution and correlation. While the potential applicability of SnFFT is fairly broad, as an example, we show how it can be used for clustering ranked data, where each ranking is modeled as a distribution on Sn.
SnFFT:一个Julia工具箱,用于对排列上的函数进行傅里叶分析
SnFFT是一个用Julia语言编写的易于使用的软件库,用于促进n次对称群(排列集)的傅里叶分析,表示为Sn,并使其更容易在统计机器学习算法中部署。我们的实现在内部创建Sn的不可约矩阵表示,并有效地计算快速傅里叶变换(fft)和逆快速傅里叶变换(ifft)。高级用户可以通过利用各种其他形式的稀疏性来实现可伸缩性和有希望的实际性能。此外,该库还支持部分傅里叶反变换,该变换通过仅保持前几个傅里叶系数来利用函数的平滑特性。开箱即用,SnFFT目前为Sn上定义的函数提供了两个重要的操作,即卷积和相关。虽然SnFFT的潜在适用性相当广泛,但作为一个示例,我们将展示如何将其用于对排名数据进行聚类,其中每个排名都被建模为Sn上的分布。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信