DIRECTIONS OF EXTREME STIFFNESS AND STRENGTH IN LINEAR ELASTIC ANISOTROPIC SOLIDS

Q3 Engineering
P. Szeptyński
{"title":"DIRECTIONS OF EXTREME STIFFNESS AND STRENGTH IN LINEAR ELASTIC ANISOTROPIC SOLIDS","authors":"P. Szeptyński","doi":"10.7494/MECH.2012.31.3.124","DOIUrl":null,"url":null,"abstract":"An investigation for directions of extreme - maximum or minimum - values of the longitudinal and transverse stiffness moduli as well as of the limit uniaxial and limit shear stresses in anisotropic linear elastic solids is performed in the pa­per. The cases of cubic symmetry (regular crystal system) and of volumetrically isotropic cylindrical symmetry (hexago­nal crystal system with additional constraints) are considered. The systems of non-linear equations for the components of the versors of investigated directions are derived with use of the spectral decomposition of the elasticity (stiffness and compliance) tensors.","PeriodicalId":38333,"journal":{"name":"International Journal of Mechanics and Control","volume":"32 1","pages":"124"},"PeriodicalIF":0.0000,"publicationDate":"2012-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Mechanics and Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7494/MECH.2012.31.3.124","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

Abstract

An investigation for directions of extreme - maximum or minimum - values of the longitudinal and transverse stiffness moduli as well as of the limit uniaxial and limit shear stresses in anisotropic linear elastic solids is performed in the pa­per. The cases of cubic symmetry (regular crystal system) and of volumetrically isotropic cylindrical symmetry (hexago­nal crystal system with additional constraints) are considered. The systems of non-linear equations for the components of the versors of investigated directions are derived with use of the spectral decomposition of the elasticity (stiffness and compliance) tensors.
线弹性各向异性固体的极限刚度和强度方向
本文对各向异性线弹性固体的纵向和横向刚度模量以及极限单轴和极限剪应力的极值和最小值方向进行了研究。考虑了立方对称(规则晶体体系)和体积各向同性圆柱对称(附加约束的六角形晶体体系)的情况。利用弹性张量(刚度张量和柔度张量)的谱分解,导出了所研究方向逆分量的非线性方程组。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
International Journal of Mechanics and Control
International Journal of Mechanics and Control Engineering-Computational Mechanics
CiteScore
2.10
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信