Flight trajectory time and altitude prediction based on support vector and decision tree regressions

Yingchao Xiao, Yuanyuan Ma, Qiucheng Xu, Hui Ding
{"title":"Flight trajectory time and altitude prediction based on support vector and decision tree regressions","authors":"Yingchao Xiao, Yuanyuan Ma, Qiucheng Xu, Hui Ding","doi":"10.1117/12.2574419","DOIUrl":null,"url":null,"abstract":"Four dimensional (4D) flight trajectories play an important role in air traffic future plans. In this paper, the time and altitude variables in 4D trajectories are analyzed for their characteristics, and the procedure of preprocessing flight trajectory data is provided, and support vector regression and decision tree regression are introduced to build the prediction models for trajectory time and altitude, respectively. It is demonstrated by the experiments on actual flight trajectory data that the proposed method can improve the 4D trajectory prediction accuracy effectively.","PeriodicalId":90079,"journal":{"name":"... International Workshop on Pattern Recognition in NeuroImaging. International Workshop on Pattern Recognition in NeuroImaging","volume":"66 1","pages":"1152608 - 1152608-6"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"... International Workshop on Pattern Recognition in NeuroImaging. International Workshop on Pattern Recognition in NeuroImaging","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2574419","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Four dimensional (4D) flight trajectories play an important role in air traffic future plans. In this paper, the time and altitude variables in 4D trajectories are analyzed for their characteristics, and the procedure of preprocessing flight trajectory data is provided, and support vector regression and decision tree regression are introduced to build the prediction models for trajectory time and altitude, respectively. It is demonstrated by the experiments on actual flight trajectory data that the proposed method can improve the 4D trajectory prediction accuracy effectively.
基于支持向量和决策树回归的飞行轨迹时间和高度预测
四维飞行轨迹在未来空中交通规划中发挥着重要作用。分析了四维飞行轨迹中时间和高度变量的特点,给出了飞行轨迹数据的预处理步骤,并引入支持向量回归和决策树回归分别建立了飞行轨迹时间和高度的预测模型。实际飞行轨迹数据实验表明,该方法能有效提高四维轨迹预测精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信