Non overlapping Domain Decomposition based on Discontinuous Galerkin and enhanced transmission conditions for multi-scale structures

M. A. Echeverri Bautista, F. Vipiana, G. Vecchi, M. Francavilla
{"title":"Non overlapping Domain Decomposition based on Discontinuous Galerkin and enhanced transmission conditions for multi-scale structures","authors":"M. A. Echeverri Bautista, F. Vipiana, G. Vecchi, M. Francavilla","doi":"10.1109/APS.2014.6905019","DOIUrl":null,"url":null,"abstract":"A Non overlapping Domain Decomposition (DDM) strategy is proposed, to solve the ill-conditioning in multi-scale PEC structures. The considered scheme uses the Discontinuous Galerkin (DG) formulation, avoiding artificial surfaces between the decomposed domains; furthermore, the proposed DDM can be applied to open structures straightly. The convergence of the algorithm is accelerated through the enhancement of the transmission conditions in the cutting contours separating the domains.","PeriodicalId":6663,"journal":{"name":"2014 IEEE Antennas and Propagation Society International Symposium (APSURSI)","volume":"7 1","pages":"1387-1388"},"PeriodicalIF":0.0000,"publicationDate":"2014-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE Antennas and Propagation Society International Symposium (APSURSI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/APS.2014.6905019","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

A Non overlapping Domain Decomposition (DDM) strategy is proposed, to solve the ill-conditioning in multi-scale PEC structures. The considered scheme uses the Discontinuous Galerkin (DG) formulation, avoiding artificial surfaces between the decomposed domains; furthermore, the proposed DDM can be applied to open structures straightly. The convergence of the algorithm is accelerated through the enhancement of the transmission conditions in the cutting contours separating the domains.
基于不连续Galerkin和增强传输条件的多尺度结构无重叠区域分解
针对多尺度PEC结构中的病态问题,提出了一种无重叠区域分解(DDM)策略。所考虑的方案使用不连续伽辽金(DG)公式,避免了分解区域之间的人工表面;此外,所提出的DDM可以直接应用于开放式结构。通过增强分割域的切割轮廓的传输条件,加快了算法的收敛速度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信