Combination coefficients for fastest convergence of distributed LMS estimation

K. Wagner, M. Doroslovački
{"title":"Combination coefficients for fastest convergence of distributed LMS estimation","authors":"K. Wagner, M. Doroslovački","doi":"10.1109/ICASSP.2014.6855001","DOIUrl":null,"url":null,"abstract":"Diffusion strategies for learning across networks which minimize the transient regime mean-square deviation across all nodes are presented. The problem of choosing combination coefficients which minimize the mean-square deviation at all given time instances results in a quadratic program with linear constraints. The implementation of the optimal procedure is based on the estimation of weight deviation vectors for which an algorithm is proposed. Additionally, the optimization that uses relaxed constraints is considered. The proposed methods were validated through simulations for different estimation distribution strategies and input signals. The results show a potential for significant improvement of the convergence speed.","PeriodicalId":6545,"journal":{"name":"2014 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","volume":"21 1","pages":"7218-7222"},"PeriodicalIF":0.0000,"publicationDate":"2014-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASSP.2014.6855001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

Diffusion strategies for learning across networks which minimize the transient regime mean-square deviation across all nodes are presented. The problem of choosing combination coefficients which minimize the mean-square deviation at all given time instances results in a quadratic program with linear constraints. The implementation of the optimal procedure is based on the estimation of weight deviation vectors for which an algorithm is proposed. Additionally, the optimization that uses relaxed constraints is considered. The proposed methods were validated through simulations for different estimation distribution strategies and input signals. The results show a potential for significant improvement of the convergence speed.
分布式LMS估计最快收敛的组合系数
提出了一种跨网络学习的扩散策略,使所有节点的暂态状态均方差最小。选取在所有给定时间实例中均方偏差最小的组合系数的问题是一个具有线性约束的二次规划问题。优化过程的实现是基于权重偏差向量的估计,并提出了一种算法。此外,还考虑了使用宽松约束的优化。通过不同估计分布策略和输入信号的仿真验证了所提方法的有效性。结果表明,收敛速度有显著提高的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信