Discrete Model of Plasticity and Failure of Crystalline Materials

IF 1 4区 数学
V. Busov
{"title":"Discrete Model of Plasticity and Failure of Crystalline Materials","authors":"V. Busov","doi":"10.4236/AM.2021.123010","DOIUrl":null,"url":null,"abstract":"Within the framework of a discrete model of the nuclei of linear and planar defects, the variational principles of sliding in translational and rotational plasticity, fracture by separation (cleavage) and shear (shearing) in crystalline materials are considered. The analysis of mass transfer fluxes near structural kinetic transitions of slip bands into cells, cells into fragments of deformation origin, destruction by separation and shear for fractal spaces using fractional Riemann-Liouville derivatives, local and global criteria of destruction is carried out. One of the possible schemes of the crack initiation and growth mechanism in metals is disclosed. It is shown that the discrete model of plasticity and fracture does not contradict the known dislocation models of fracture and makes it possible to abandon the kinetic concept of thermofluctuation rupture of interatomic bonds at low temperatures.","PeriodicalId":55568,"journal":{"name":"Applied Mathematics-A Journal of Chinese Universities Series B","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2021-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Mathematics-A Journal of Chinese Universities Series B","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4236/AM.2021.123010","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Within the framework of a discrete model of the nuclei of linear and planar defects, the variational principles of sliding in translational and rotational plasticity, fracture by separation (cleavage) and shear (shearing) in crystalline materials are considered. The analysis of mass transfer fluxes near structural kinetic transitions of slip bands into cells, cells into fragments of deformation origin, destruction by separation and shear for fractal spaces using fractional Riemann-Liouville derivatives, local and global criteria of destruction is carried out. One of the possible schemes of the crack initiation and growth mechanism in metals is disclosed. It is shown that the discrete model of plasticity and fracture does not contradict the known dislocation models of fracture and makes it possible to abandon the kinetic concept of thermofluctuation rupture of interatomic bonds at low temperatures.
结晶材料塑性与破坏的离散模型
在线性和平面缺陷核的离散模型框架内,考虑了晶体材料中平移和旋转塑性滑动、分离(解理)和剪切(剪切)断裂的变分原理。采用分数阶Riemann-Liouville导数、局部和全局破坏准则,对分形空间滑移带向单元、单元向变形源碎片、分离和剪切破坏等结构动力学转变附近的传质通量进行了分析。揭示了金属裂纹萌生和扩展机制的一种可能方案。结果表明,塑性和断裂的离散模型与已知的断裂位错模型并不矛盾,从而使原子间键在低温下热涨落断裂的动力学概念得以摒弃。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
10.00%
发文量
33
期刊介绍: Applied Mathematics promotes the integration of mathematics with other scientific disciplines, expanding its fields of study and promoting the development of relevant interdisciplinary subjects. The journal mainly publishes original research papers that apply mathematical concepts, theories and methods to other subjects such as physics, chemistry, biology, information science, energy, environmental science, economics, and finance. In addition, it also reports the latest developments and trends in which mathematics interacts with other disciplines. Readers include professors and students, professionals in applied mathematics, and engineers at research institutes and in industry. Applied Mathematics - A Journal of Chinese Universities has been an English-language quarterly since 1993. The English edition, abbreviated as Series B, has different contents than this Chinese edition, Series A.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信