Fe3O4/GO nanocomposite modified glassy carbon electrode as a novel voltammetric sensor for determination of bisphenol A

IF 2.9 Q2 ELECTROCHEMISTRY
Fariba Beigmoradi, H. Beitollahi
{"title":"Fe3O4/GO nanocomposite modified glassy carbon electrode as a novel voltammetric sensor for determination of bisphenol A","authors":"Fariba Beigmoradi, H. Beitollahi","doi":"10.5599/jese.1482","DOIUrl":null,"url":null,"abstract":"A new voltammetric sensor is proposed for the determination of bisphenol A, using a glassy carbon electrode (GCE) modified with Fe3O4/graphene oxide (GO) nanocomposite. The modification of the electrode surface was performed by dispersion drop-casting. The electro­chemical behavior of bisphenol A was evaluated by cyclic voltammetry (CV). The oxidation peak was observed during the anodic potential scan at potentials of 0.45 V. Higher anodic peak currents (Ipa) were observed at Fe3O4/GO/GCE modified electrode than at bare GCE. The elec­trochemical determination by differential pulse voltammetry (DPV) revealed a linear response in the concentration range of 1.0×10-7 to 5.0×10-5 M, with a detection limit of 9.0×10-8 M. The proposed method was successfully applied using water samples, with good recoveries.","PeriodicalId":15660,"journal":{"name":"Journal of Electrochemical Science and Engineering","volume":"45 1","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2022-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Electrochemical Science and Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5599/jese.1482","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
引用次数: 1

Abstract

A new voltammetric sensor is proposed for the determination of bisphenol A, using a glassy carbon electrode (GCE) modified with Fe3O4/graphene oxide (GO) nanocomposite. The modification of the electrode surface was performed by dispersion drop-casting. The electro­chemical behavior of bisphenol A was evaluated by cyclic voltammetry (CV). The oxidation peak was observed during the anodic potential scan at potentials of 0.45 V. Higher anodic peak currents (Ipa) were observed at Fe3O4/GO/GCE modified electrode than at bare GCE. The elec­trochemical determination by differential pulse voltammetry (DPV) revealed a linear response in the concentration range of 1.0×10-7 to 5.0×10-5 M, with a detection limit of 9.0×10-8 M. The proposed method was successfully applied using water samples, with good recoveries.
Fe3O4/GO纳米复合修饰玻碳电极作为新型伏安传感器测定双酚a
利用Fe3O4/氧化石墨烯(GO)纳米复合材料修饰的玻碳电极(GCE),提出了一种新的测定双酚A的伏安传感器。采用分散滴铸法对电极表面进行改性。采用循环伏安法(CV)评价了双酚A的电化学行为。在0.45 V的阳极电位扫描中观察到氧化峰。Fe3O4/GO/GCE修饰电极的阳极峰值电流(Ipa)高于裸GCE。差分脉冲伏安法(DPV)在1.0×10-7 ~ 5.0×10-5 M的浓度范围内呈线性响应,检出限为9.0×10-8 M,该方法适用于水样,回收率高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.60
自引率
27.30%
发文量
90
审稿时长
6 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信