A Theoretical Framework for Multi-Hazard Risk Mapping on Agricultural Areas Considering Artificial Intelligence, IoT, and Climate Change Scenarios

R. Silva, M. C. Fava, A. Saraiva, E. Mendiondo, C. Cugnasca, A. Delbem
{"title":"A Theoretical Framework for Multi-Hazard Risk Mapping on Agricultural Areas Considering Artificial Intelligence, IoT, and Climate Change Scenarios","authors":"R. Silva, M. C. Fava, A. Saraiva, E. Mendiondo, C. Cugnasca, A. Delbem","doi":"10.3390/engproc2021009039","DOIUrl":null,"url":null,"abstract":"This work proposes a data-driven theoretical framework for addressing: (i) extreme climate events prediction through multi-hazard risk mapping using remote sensing, artificial intelligence, and hydrological models, considering multiple hazards; and (ii) environmental monitoring using on-site data collection and IoT technologies. The framework considers the possibility of evaluating multiple climate change scenarios for improving decision-making in terms of Government policies and farm planning. Its main requirements are gathered based on a literature review. Several essential metrics that can be evaluated, considering both supervised and unsupervised metrics and key performance indicators considering the triple bottom line aspects, are also proposed. The framework also adopts multi-hazard (considering several hazards) and multi-risk (considering several relevant stakeholders) aspects and can be used to simulate different scenarios, an essential task for improving decision-making.","PeriodicalId":11748,"journal":{"name":"Engineering Proceedings","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering Proceedings","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/engproc2021009039","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

This work proposes a data-driven theoretical framework for addressing: (i) extreme climate events prediction through multi-hazard risk mapping using remote sensing, artificial intelligence, and hydrological models, considering multiple hazards; and (ii) environmental monitoring using on-site data collection and IoT technologies. The framework considers the possibility of evaluating multiple climate change scenarios for improving decision-making in terms of Government policies and farm planning. Its main requirements are gathered based on a literature review. Several essential metrics that can be evaluated, considering both supervised and unsupervised metrics and key performance indicators considering the triple bottom line aspects, are also proposed. The framework also adopts multi-hazard (considering several hazards) and multi-risk (considering several relevant stakeholders) aspects and can be used to simulate different scenarios, an essential task for improving decision-making.
考虑人工智能、物联网和气候变化情景的农业多灾种风险制图理论框架
这项工作提出了一个数据驱动的理论框架,用于解决:(i)考虑多种灾害,通过使用遥感、人工智能和水文模型的多灾害风险绘图来预测极端气候事件;(ii)利用现场数据收集和物联网技术进行环境监测。该框架考虑了评估多种气候变化情景的可能性,以便在政府政策和农业规划方面改进决策。在文献综述的基础上收集了其主要需求。还提出了几个可以评估的基本指标,考虑监督和非监督指标以及考虑三重底线方面的关键绩效指标。该框架还采用多危害(考虑几种危害)和多风险(考虑几个相关利益相关者)方面,可用于模拟不同的情景,这是改进决策的基本任务。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.70
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信