Concordance Invariants and the Turaev Genus

H. Jung, Sungkyung Kang, Seungwon Kim
{"title":"Concordance Invariants and the Turaev Genus","authors":"H. Jung, Sungkyung Kang, Seungwon Kim","doi":"10.1093/IMRN/RNAB055","DOIUrl":null,"url":null,"abstract":"We show that the differences between various concordance invariants of knots, including Rasmussen's $s$-invariant and its generalizations $s_n$-invariants, give lower bounds to the Turaev genus of knots. Using the fact that our bounds are nontrivial for some quasi-alternating knots, we show the additivity of Turaev genus for a certain class of knots. This leads us to the first example of an infinite family of quasi-alternating knots with Turaev genus exactly $g$ for any fixed positive integer $g$, solving a question of Champanerkar-Kofman.","PeriodicalId":8454,"journal":{"name":"arXiv: Geometric Topology","volume":"27 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Geometric Topology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/IMRN/RNAB055","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

We show that the differences between various concordance invariants of knots, including Rasmussen's $s$-invariant and its generalizations $s_n$-invariants, give lower bounds to the Turaev genus of knots. Using the fact that our bounds are nontrivial for some quasi-alternating knots, we show the additivity of Turaev genus for a certain class of knots. This leads us to the first example of an infinite family of quasi-alternating knots with Turaev genus exactly $g$ for any fixed positive integer $g$, solving a question of Champanerkar-Kofman.
一致性不变量与Turaev属
我们证明了结点的各种一致性不变量(包括Rasmussen的$s$-不变量及其推广的$s_n$-不变量)之间的差异,给出了结点的Turaev格的下界。利用某些拟交替结的界是非平凡的这一事实,我们证明了一类结的Turaev属的可加性。这使我们得到了对任意固定正整数具有Turaev属的无限族拟交替结的第一个例子,解决了Champanerkar-Kofman问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信