Towards autoscaling of Apache Flink jobs

IF 0.3 Q4 COMPUTER SCIENCE, THEORY & METHODS
B. Varga, Márton Balassi, A. Kiss
{"title":"Towards autoscaling of Apache Flink jobs","authors":"B. Varga, Márton Balassi, A. Kiss","doi":"10.2478/ausi-2021-0003","DOIUrl":null,"url":null,"abstract":"Abstract Data stream processing has been gaining attention in the past decade. Apache Flink is an open-source distributed stream processing engine that is able to process a large amount of data in real time with low latency. Computations are distributed among a cluster of nodes. Currently, provisioning the appropriate amount of cloud resources must be done manually ahead of time. A dynamically varying workload may exceed the capacity of the cluster, or leave resources underutilized. In our paper, we describe an architecture that enables the automatic scaling of Flink jobs on Kubernetes based on custom metrics, and describe a simple scaling policy. We also measure the e ects of state size and target parallelism on the duration of the scaling operation, which must be considered when designing an autoscaling policy, so that the Flink job respects a Service Level Agreement.","PeriodicalId":41480,"journal":{"name":"Acta Universitatis Sapientiae Informatica","volume":"39 1","pages":"39 - 59"},"PeriodicalIF":0.3000,"publicationDate":"2021-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Universitatis Sapientiae Informatica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/ausi-2021-0003","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 2

Abstract

Abstract Data stream processing has been gaining attention in the past decade. Apache Flink is an open-source distributed stream processing engine that is able to process a large amount of data in real time with low latency. Computations are distributed among a cluster of nodes. Currently, provisioning the appropriate amount of cloud resources must be done manually ahead of time. A dynamically varying workload may exceed the capacity of the cluster, or leave resources underutilized. In our paper, we describe an architecture that enables the automatic scaling of Flink jobs on Kubernetes based on custom metrics, and describe a simple scaling policy. We also measure the e ects of state size and target parallelism on the duration of the scaling operation, which must be considered when designing an autoscaling policy, so that the Flink job respects a Service Level Agreement.
实现Apache Flink作业的自动伸缩
在过去的十年中,数据流处理受到了越来越多的关注。Apache Flink是一个开源的分布式流处理引擎,能够以低延迟实时处理大量数据。计算分布在一个节点集群中。目前,必须提前手动配置适当数量的云资源。动态变化的工作负载可能会超出集群的容量,或者使资源未得到充分利用。在我们的论文中,我们描述了一种架构,可以根据自定义指标自动扩展Kubernetes上的Flink作业,并描述了一个简单的扩展策略。我们还测量了状态大小和目标并行性对伸缩操作持续时间的影响,在设计自动伸缩策略时必须考虑到这一点,以便Flink作业遵守服务水平协议。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Acta Universitatis Sapientiae Informatica
Acta Universitatis Sapientiae Informatica COMPUTER SCIENCE, THEORY & METHODS-
自引率
0.00%
发文量
9
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信