{"title":"Research Progress on Biodegradable Zn-Based Alloy Materials","authors":"Wang Heng, Yang Kang, Yiming Ma, Xu Lin","doi":"10.11648/j.ajls.20231104.12","DOIUrl":null,"url":null,"abstract":": As biodegradable materials for biomedical purposes, people have done a lot of research on Mg alloy and Fe alloy. However, both types of materials have obvious shortcomings. Mg alloy degrades too rapid and the inhomogeneity degradation rate in the human environment, resulting in its mechanical properties rapidly declining and it cannot provide adequate support or fixing capacity. Fe alloy has a very slow degradation rate due to the good protective effect of its degradation products, resulting in similar problems to non-degradable material. In this situation, Zn alloys are often mentioned in recent years, because Zn is an essential trace element for the human body, and the standard potential of Zn is between Mg and Fe, so its degradation rate is excellent. At the same time, Zn-based alloy has become a new biodegradable biomedical material after Mg alloy and Fe alloy, and has been widely used in cardiovascular stents, bone implants and internal fixation devices, and gastrointestinal staplers. At present, there is no systematic research result on biodegradable biomedical Zn-based Alloy Materials, the research interests include composition design, processing and preparation, degradation principle, biocompatibility, mechanical properties in all aspects. This article reviewed the properties of Zn-based Alloy Materials compared with other typical alloys and pointed out the future development direction","PeriodicalId":7759,"journal":{"name":"American Journal of Life Sciences","volume":"17 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"American Journal of Life Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11648/j.ajls.20231104.12","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
: As biodegradable materials for biomedical purposes, people have done a lot of research on Mg alloy and Fe alloy. However, both types of materials have obvious shortcomings. Mg alloy degrades too rapid and the inhomogeneity degradation rate in the human environment, resulting in its mechanical properties rapidly declining and it cannot provide adequate support or fixing capacity. Fe alloy has a very slow degradation rate due to the good protective effect of its degradation products, resulting in similar problems to non-degradable material. In this situation, Zn alloys are often mentioned in recent years, because Zn is an essential trace element for the human body, and the standard potential of Zn is between Mg and Fe, so its degradation rate is excellent. At the same time, Zn-based alloy has become a new biodegradable biomedical material after Mg alloy and Fe alloy, and has been widely used in cardiovascular stents, bone implants and internal fixation devices, and gastrointestinal staplers. At present, there is no systematic research result on biodegradable biomedical Zn-based Alloy Materials, the research interests include composition design, processing and preparation, degradation principle, biocompatibility, mechanical properties in all aspects. This article reviewed the properties of Zn-based Alloy Materials compared with other typical alloys and pointed out the future development direction