{"title":"Vertex resolvability of convex polytopes with n-paths of length p","authors":"Sahil Sharma, V. K. Bhat","doi":"10.1080/23799927.2022.2059012","DOIUrl":null,"url":null,"abstract":"Let be a simple, connected, and undirected graph. The distance between two vertices denoted by , is the length of the shortest path connecting u and v. A subset of vertices is said to be a resolving set for G if for any two distinct vertices V, there exist a vertex such that . A minimal resolving set is called a metric basis, and the cardinality of the basis set is called the metric dimension of G, denoted by . In this article, we find the metric dimension for two infinite families of plane graphs and , where is obtained by the combination of copies of bipartite graphs , and is obtained by the combination of double antiprism graph with antiprism graph and then adding n-paths of length p.","PeriodicalId":37216,"journal":{"name":"International Journal of Computer Mathematics: Computer Systems Theory","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2022-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Computer Mathematics: Computer Systems Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/23799927.2022.2059012","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 1
Abstract
Let be a simple, connected, and undirected graph. The distance between two vertices denoted by , is the length of the shortest path connecting u and v. A subset of vertices is said to be a resolving set for G if for any two distinct vertices V, there exist a vertex such that . A minimal resolving set is called a metric basis, and the cardinality of the basis set is called the metric dimension of G, denoted by . In this article, we find the metric dimension for two infinite families of plane graphs and , where is obtained by the combination of copies of bipartite graphs , and is obtained by the combination of double antiprism graph with antiprism graph and then adding n-paths of length p.