Bounding Inequalities for Eigenvalues of Principal Submatrices

A. Dax
{"title":"Bounding Inequalities for Eigenvalues of Principal Submatrices","authors":"A. Dax","doi":"10.4236/ALAMT.2019.92002","DOIUrl":null,"url":null,"abstract":"Ky Fan trace theorems and the interlacing theorems of Cauchy and Poincare are important observations that characterize Hermitian matrices. In this note, we introduce a new type of inequalities which extend these theorems. The new inequalities are obtained from the old ones by replacing eigenvalues and diagonal entries with their moduli. This modification yields effective bounding inequalities which are valid on a larger range of matrices.","PeriodicalId":65610,"journal":{"name":"线性代数与矩阵理论研究进展(英文)","volume":"2 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"线性代数与矩阵理论研究进展(英文)","FirstCategoryId":"1089","ListUrlMain":"https://doi.org/10.4236/ALAMT.2019.92002","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Ky Fan trace theorems and the interlacing theorems of Cauchy and Poincare are important observations that characterize Hermitian matrices. In this note, we introduce a new type of inequalities which extend these theorems. The new inequalities are obtained from the old ones by replacing eigenvalues and diagonal entries with their moduli. This modification yields effective bounding inequalities which are valid on a larger range of matrices.
主子矩阵特征值的边界不等式
Ky Fan迹定理和柯西和庞加莱的交错定理是表征厄米矩阵的重要观察结果。在这篇笔记中,我们引入一类新的不等式来扩展这些定理。新的不等式是通过用它们的模替换特征值和对角线项而得到的。这种修正产生了有效的边界不等式,它在更大范围的矩阵上有效。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
56
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信