{"title":"Thinking space generation using context-enhanced knowledge fusion for systematic brain computing","authors":"Hongzhi Kuai, Xiao‐Rong Tao, Ning Zhong","doi":"10.3233/web-220089","DOIUrl":null,"url":null,"abstract":"The convergence of systems neuroscience and open science arouses great interest in the current brain big data era, highlighting the thinking capability of intelligent agents in handling multi-source knowledge, information and data across various levels of granularity. To realize such thinking-inspired brain computing during a brain investigation process, one of the major challenges is to find a holistic brain map that can model multi-dimensional variables of brain investigations across brain functions, experimental tasks, brain data and analytical methods synthetically. In this paper, we propose a context-enhanced graph learning method to fuse open knowledge from different sources, including: contextual information enrichment, structural knowledge fusion, and holistic graph learning. Such a method can enhance contextual learning of abstract concepts and relational learning between two concepts that have large gap from different dimensions. As a result, an extensible space, namely Thinking Space, is generated to represent holistic variables and their relations in a map, which currently contributes to the field of brain research for systematic brain computing. In the future, the Thinking Space coupled with the rapid development and spread of artificial intelligence generated content will be developed in more scenarios so as to promote global interactions of intelligence in the connected world.","PeriodicalId":42775,"journal":{"name":"Web Intelligence","volume":null,"pages":null},"PeriodicalIF":0.2000,"publicationDate":"2023-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Web Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3233/web-220089","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
The convergence of systems neuroscience and open science arouses great interest in the current brain big data era, highlighting the thinking capability of intelligent agents in handling multi-source knowledge, information and data across various levels of granularity. To realize such thinking-inspired brain computing during a brain investigation process, one of the major challenges is to find a holistic brain map that can model multi-dimensional variables of brain investigations across brain functions, experimental tasks, brain data and analytical methods synthetically. In this paper, we propose a context-enhanced graph learning method to fuse open knowledge from different sources, including: contextual information enrichment, structural knowledge fusion, and holistic graph learning. Such a method can enhance contextual learning of abstract concepts and relational learning between two concepts that have large gap from different dimensions. As a result, an extensible space, namely Thinking Space, is generated to represent holistic variables and their relations in a map, which currently contributes to the field of brain research for systematic brain computing. In the future, the Thinking Space coupled with the rapid development and spread of artificial intelligence generated content will be developed in more scenarios so as to promote global interactions of intelligence in the connected world.
期刊介绍:
Web Intelligence (WI) is an official journal of the Web Intelligence Consortium (WIC), an international organization dedicated to promoting collaborative scientific research and industrial development in the era of Web intelligence. WI seeks to collaborate with major societies and international conferences in the field. WI is a peer-reviewed journal, which publishes four issues a year, in both online and print form. WI aims to achieve a multi-disciplinary balance between research advances in theories and methods usually associated with Collective Intelligence, Data Science, Human-Centric Computing, Knowledge Management, and Network Science. It is committed to publishing research that both deepen the understanding of computational, logical, cognitive, physical, and social foundations of the future Web, and enable the development and application of technologies based on Web intelligence. The journal features high-quality, original research papers (including state-of-the-art reviews), brief papers, and letters in all theoretical and technology areas that make up the field of WI. The papers should clearly focus on some of the following areas of interest: a. Collective Intelligence[...] b. Data Science[...] c. Human-Centric Computing[...] d. Knowledge Management[...] e. Network Science[...]