Karem Al-Garadi, A. Aldughaither, Mustafa Ba alawi, H. Al-Hashim, Najmudeen Sibaweihi, M. Said
{"title":"A Novel Approach for Optimizing Multistage Hydraulic Fracturing of Gas Condensate Horizontal Wells","authors":"Karem Al-Garadi, A. Aldughaither, Mustafa Ba alawi, H. Al-Hashim, Najmudeen Sibaweihi, M. Said","doi":"10.2118/194971-MS","DOIUrl":null,"url":null,"abstract":"Condensate banking has been identified to cause significant drop in gas relative permeability and consequently reduction of the productivity of gas condensate wells. To overcome this problem, hydraulic fracturing has been used as a mean to minimize or eliminate this phenomenon. Furthermore multistage hydraulic fracturing techniques have been used to enhance the productivity of horizontal gas condensate wells especially in low permeability formation. Even though multistage hydraulic fracturing has provided an effective solution for condensate blockage to some extent as it promotes linear flow modes which will minimize the pressure drops and consequently improves the inflow performance considerably. However, this technique is very costly, and has to be optimized to get the best long-term performance of the multistage fractured horizontal gas condensate wells.\n In this paper, multiple sensitivity analyses were conducted in order to come up with an optimum multistage hydraulic fracturing scenario. In these analyses, our manipulations were focused mainly on the operational parameters such as fractures half length, fractures conductivity using compositional commercial simulator. CMG-GEM simulator was used to investigate the different cases proposed for applying multistage hydraulic fracturing of horizontal gas condensate wells. The investigation began with a base case scenario where the fractures half-length were fixed for all stages with equal spacing between them. Then, six more fractures half-length patterns were created by introducing new approach where the well performance was studied if they are in increasing trend away from the wellbore (coning-up), or in a decreasing trend (coning-down). Well performance is furtherly addressed when the fractures half-length arrangements formed parabolic shapes including both occasions of concaving upward and downward. Finally, the last two patterns illustrated the effect of having the fractures half-length arrangements both skewed to the left and right on well productivity.\n The investigation of the effect of changing the multistage hydraulic fractures half-length distribution patterns on the performance of a gas condensate well was conducted and resulted in parabolic up distribution pattern to be the optimum pattern amongst the other tested ones. It results in the highest cumulative both gas and condensate production. It also maintains the gas flow rate and bottom hole pressure more efficiently. The parabolic up distribution pattern confirms that the majority of gas production was fed by the fractures at the heel and at the toe of the horizontal drainhole which is in agreement with the flux distribution along the horizontal well.","PeriodicalId":11321,"journal":{"name":"Day 3 Wed, March 20, 2019","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2019-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Day 3 Wed, March 20, 2019","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2118/194971-MS","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Condensate banking has been identified to cause significant drop in gas relative permeability and consequently reduction of the productivity of gas condensate wells. To overcome this problem, hydraulic fracturing has been used as a mean to minimize or eliminate this phenomenon. Furthermore multistage hydraulic fracturing techniques have been used to enhance the productivity of horizontal gas condensate wells especially in low permeability formation. Even though multistage hydraulic fracturing has provided an effective solution for condensate blockage to some extent as it promotes linear flow modes which will minimize the pressure drops and consequently improves the inflow performance considerably. However, this technique is very costly, and has to be optimized to get the best long-term performance of the multistage fractured horizontal gas condensate wells.
In this paper, multiple sensitivity analyses were conducted in order to come up with an optimum multistage hydraulic fracturing scenario. In these analyses, our manipulations were focused mainly on the operational parameters such as fractures half length, fractures conductivity using compositional commercial simulator. CMG-GEM simulator was used to investigate the different cases proposed for applying multistage hydraulic fracturing of horizontal gas condensate wells. The investigation began with a base case scenario where the fractures half-length were fixed for all stages with equal spacing between them. Then, six more fractures half-length patterns were created by introducing new approach where the well performance was studied if they are in increasing trend away from the wellbore (coning-up), or in a decreasing trend (coning-down). Well performance is furtherly addressed when the fractures half-length arrangements formed parabolic shapes including both occasions of concaving upward and downward. Finally, the last two patterns illustrated the effect of having the fractures half-length arrangements both skewed to the left and right on well productivity.
The investigation of the effect of changing the multistage hydraulic fractures half-length distribution patterns on the performance of a gas condensate well was conducted and resulted in parabolic up distribution pattern to be the optimum pattern amongst the other tested ones. It results in the highest cumulative both gas and condensate production. It also maintains the gas flow rate and bottom hole pressure more efficiently. The parabolic up distribution pattern confirms that the majority of gas production was fed by the fractures at the heel and at the toe of the horizontal drainhole which is in agreement with the flux distribution along the horizontal well.