A. Andjelkovic, J. Xiang, S. Stamatovic, Y. Hua, G. Xi, Michael M. Wang, R. Keep
{"title":"Endothelial Targets in Stroke: Translating Animal Models to Human.","authors":"A. Andjelkovic, J. Xiang, S. Stamatovic, Y. Hua, G. Xi, Michael M. Wang, R. Keep","doi":"10.1161/ATVBAHA.119.312816","DOIUrl":null,"url":null,"abstract":"Cerebral ischemia (stroke) induces injury to the cerebral endothelium that may contribute to parenchymal injury and worsen outcome. This review focuses on current preclinical studies examining how to prevent ischemia-induced endothelial dysfunction. It particularly focuses on targets at the endothelium itself. Those include endothelial tight junctions, transcytosis, endothelial cell death, and adhesion molecule expression. It also examines how such studies are being translated to the clinic, especially as adjunct therapies for preventing intracerebral hemorrhage during reperfusion of the ischemic brain. Identification of endothelial targets may prove valuable in a search for combination therapies that would specifically protect different cell types in ischemia.","PeriodicalId":8404,"journal":{"name":"Arteriosclerosis, Thrombosis, & Vascular Biology","volume":"4 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"35","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Arteriosclerosis, Thrombosis, & Vascular Biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1161/ATVBAHA.119.312816","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 35
Abstract
Cerebral ischemia (stroke) induces injury to the cerebral endothelium that may contribute to parenchymal injury and worsen outcome. This review focuses on current preclinical studies examining how to prevent ischemia-induced endothelial dysfunction. It particularly focuses on targets at the endothelium itself. Those include endothelial tight junctions, transcytosis, endothelial cell death, and adhesion molecule expression. It also examines how such studies are being translated to the clinic, especially as adjunct therapies for preventing intracerebral hemorrhage during reperfusion of the ischemic brain. Identification of endothelial targets may prove valuable in a search for combination therapies that would specifically protect different cell types in ischemia.